Retinal ganglion cells (RGCs) innervate several specific CNS targets serving cortical and subcortical visual pathways and the entrainment of circadian rhythms. Recent studies have shown that retinal ganglion cells express specific combinations of POU- and LIM-domain transcription factors, but how these factors relate to the subsequent development of the retinofugal pathways and the functional identity of RGCs is mostly unknown. Here, we use targeted expression of an genetic axonal tracer, tau/beta-galactosidase, to examine target innervation by retinal ganglion cells expressing the POU-domain factor Brn3a.
View Article and Find Full Text PDFPathfinding of retinal ganglion cell (RGC) axons at the midline optic chiasm determines whether RGCs project to ipsilateral or contralateral brain visual centers, critical for binocular vision. Using Isl2tau-lacZ knockin mice, we show that the LIM-homeodomain transcription factor Isl2 marks only contralaterally projecting RGCs. The transcription factor Zic2 and guidance receptor EphB1, required by RGCs to project ipsilaterally, colocalize in RGCs distinct from Isl2 RGCs in the ventral-temporal crescent (VTC), the source of ipsilateral projections.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2002
The cytochrome P-450 eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that is implicated in the regulation of blood pressure. The identification of selective inhibitors of renal 20-HETE formation for use in vivo would facilitate studies to determine the systemic effects of this eicosanoid. We characterized the acetylenic fatty acid sodium 10-undecynyl sulfate (10-SUYS) as a potent and selective mechanism-based inhibitor of renal 20-HETE formation.
View Article and Find Full Text PDF