Purpose: This study was performed to evaluate the potential of a collagen-based membrane, collagen vitrigel (CV), for reconstructing corneal epithelium in the stromal wound and limbal stem cell deficiency (LSCD) models.
Methods: Three groups of rabbits were used in the stromal wound model: CV affixed using fibrin glue (CV + FG group, n = 9), fibrin glue only (FG group, n = 3) and an untreated control group (n = 3). In the LSCD model, one group received CV containing human limbal epithelial cells (CV + hLEC group, n = 2) and the other was an untreated control (n = 1).
The white of an egg, rendered opaque by boiling, can be converted into a thin, transparent and rigid material like glass by evaporating the moisture. This phenomenon is known as the vitrification of heat-denatured proteins. We applied vitrification technology to a collagen gel and converted it into a rigid glass-like material.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
March 2010
Laboratory investigations of stems cells in regenerative medicine have generated considerable interest within recent years, however some of this excitement is yet to be matched in the clinical arena. Two fields that are well poised to make significant clinical impact in the coming years are those of cartilage and corneal regeneration. In the case of cornea, it is widely acknowledged that corneal epithelium is derived from an adult stem cell type resident within the cornea.
View Article and Find Full Text PDFThis paper describes the fabrication and application of microfluidic devices containing collagen vitrigel (CV) used as both a functional and sacrificial cell growth substrate for the development of corneal microtissue patches. Within the device, vacuum fixation of the CV in a dehydrated state enables quick integration with standard multilayer soft lithographic techniques, while on-chip rehydration results in a gel-like collagen substrate for microfluidic cell culture. Fluidic connectivity to both the apical and basal side of the CV permits bilayered culture of epithelium and supporting stromal cell layers.
View Article and Find Full Text PDFScaffolds derived from processed tissues offer viable alternatives to synthetic polymers as biological scaffolds for regenerative medicine. Tissue-derived scaffolds provide an extracellular matrix (ECM) as the starting material for wound healing and the functional reconstruction of tissues, offering a potentially valuable approach for the replacement of damaged or missing tissues. Additionally, acellular tissue may provide a natural microenvironment for host-cell migration and the induction of stem cell differentiation to contribute to tissue regeneration.
View Article and Find Full Text PDFThe goal of this study was to evaluate the potential suitability of collagen Vitrigel (CV) membrane as a substrate for the separate reconstruction of the three main cellular layers of the cornea. Limbal explants, keratocytes, and endothelial cells were cultured on transparent membranes made of type I collagen. The resulting cell sheets were evaluated using RT-PCR, in addition to light and electron microscopy.
View Article and Find Full Text PDFPurpose: To describe the synthesis of a chondroitin sulfate-polyethylene glycol (CS-PEG) adhesive and characterize its physical and biological properties in vitro and in vivo.
Setting: Johns Hopkins University and a research facility, Baltimore, Maryland, USA.
Methods: Metabolic activity (WST-1 reagent) was used to evaluate the cytocompatibility of the adhesive with rabbit primary epithelial, stromal, and endothelial cells.
The goal of this study was to evaluate three-dimensional (3-D) poly(ethylene glycol) (PEG) hydrogels as a culture system for studying corneal keratocytes. Bovine keratocytes were subcultured in DMEM/F-12 containing 10% fetal bovine serum (FBS) through passage 5. Primary keratocytes (P0) and corneal fibroblasts from passages 1 (P1) and 3 (P3) were photoencapsulated at various cell concentrations in PEG hydrogels via brief exposure to light.
View Article and Find Full Text PDF