Angew Chem Int Ed Engl
August 2024
Top-down control of small motion is possible through top-down controlled molecular motors in replacement of larger actuators like MEMS or NEMS (micro- or nano-electromechanical systems) in the current precision technology. Improving top-down control of molecular motors to every single step is desirable for this purpose, and also for synchronization of motor actions for amplified effects. Here we report a designed single-stranded DNA molecular motor powered by alternated ultraviolet and visible light for processive track-walking, with the two light colours each locking the motor in a full directional step to allow saturated driving but no overstepping.
View Article and Find Full Text PDFNanorobots powered by designed DNA molecular motors on DNA origami platforms are vigorously pursued but still short of fully autonomous and sustainable operation, as the reported systems rely on manually operated or autonomous but bridge-burning molecular motors. Expanding DNA nanorobotics requires origami-based autonomous non-bridge-burning motors, but such advanced artificial molecular motors are rare, and their integration with DNA origami remains a challenge. Here, we report an autonomous non-bridge-burning DNA motor tailor-designed for a triangle DNA origami substrate.
View Article and Find Full Text PDFIntegrating rationally designed DNA molecular walkers and DNA origami platforms is a promising route towards advanced nano-robotics of diverse functions. Unleashing the full potential in this direction requires DNA walker-origami systems beyond the present simplistic bridge-burning designs for automated repeatable operation and scalable nano-robotic functions. Here we report such a DNA walker-origami system integrating an advanced light-powered DNA bipedal walker and a ∼170 nm-long rod-like DNA origami platform.
View Article and Find Full Text PDFThe synthesis and characterization of a new protein-polymer conjugate composed of β lactoglobulin A (βLG A) and poly(ethylene glycol) PEG is described. βLG A was selectively modified to self-assemble by super-charging via amination or succinylation followed by conjugation with PEG. An equimolar mixture of the oppositely charged protein-polymer conjugates self-assemble into spherical capsules of 80-100 nm in diameter.
View Article and Find Full Text PDFBio-orthogonal chemistry has been widely used for conjugation of polymer molecules to proteins. Here, we demonstrate the conjugation of polyethylene glycol (PEG) to bovine beta-lactoglobulin (BLG) by photo-induced cyclo-addition of tetrazole-appended PEG and allyl-modified BLG. During the course of the investigation, a significant side-reaction was found to occur for the conjugation of PEG-tetrazole to native BLG.
View Article and Find Full Text PDFCompartmentalization, as a design principle, is a prerequisite for the functioning of eukaryotic cells. Although cell mimics in the form of single vesicular compartments such as liposomes or polymersomes have been tremendously successful, investigations of the corresponding higher-order architectures, in particular bilayer-based multicompartment vesicles, have only recently gained attention. We hereby demonstrate a multicompartment cell-mimetic nanocontainer, built-up from fully synthetic membranes, which features an inner compartment equipped with a channel protein and a semi-permeable outer compartment that allows passive diffusion of small molecules.
View Article and Find Full Text PDF