Publications by authors named "Wing-Lee Chan"

Mouse models are a critical tool for studying human diseases, particularly developmental disorders. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models.

View Article and Find Full Text PDF
Article Synopsis
  • Long non-coding RNAs (lncRNAs) play a crucial role in gene regulation, but their involvement in human genetic diseases is not well understood.
  • Researchers discovered that deleting a specific lncRNA region on chromosome 2 led to severe congenital limb malformations in humans, including features like shortened limbs and fused digits.
  • The study identified a lncRNA named Maenli, which is essential for activating the engrailed-1 gene during limb development, revealing how mutations in lncRNA can contribute to Mendelian diseases.
View Article and Find Full Text PDF

The genome is organized in three-dimensional units called topologically associating domains (TADs), through a process dependent on the cooperative action of cohesin and the DNA-binding factor CTCF. Genomic rearrangements of TADs have been shown to cause gene misexpression and disease, but genome-wide depletion of CTCF has no drastic effects on transcription. Here, we investigate TAD function in vivo in mouse limb buds at the Sox9-Kcnj2 locus.

View Article and Find Full Text PDF
Article Synopsis
  • - COPI is essential for protein transport in cells, mainly recruited by Arf GTPases to form transport intermediates for proteins like Golgi enzymes.
  • - The study identifies GORAB, a protein linked to gerodermia osteodysplastica, as a key player in the COPI machinery, aiding in its recruitment to the trans-Golgi network through interactions with Scyl1.
  • - Mutations in GORAB disrupt its function and disrupt the retrieval process for Golgi enzymes, leading to issues in glycosylation, which contributes to the disease's development.
View Article and Find Full Text PDF

The regulatory specificity of enhancers and their interaction with gene promoters is thought to be controlled by their sequence and the binding of transcription factors. By studying Pitx1, a regulator of hindlimb development, we show that dynamic changes in chromatin conformation can restrict the activity of enhancers. Inconsistent with its hindlimb-restricted expression, Pitx1 is controlled by an enhancer (Pen) that shows activity in forelimbs and hindlimbs.

View Article and Find Full Text PDF

Gerodermia osteodysplastica (GO) is characterized by skin laxity and early-onset osteoporosis. GORAB, the responsible disease gene, encodes a small Golgi protein of poorly characterized function. To circumvent neonatal lethality of the GorabNull full knockout, Gorab was conditionally inactivated in mesenchymal progenitor cells (Prx1-cre), pre-osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-cre), respectively.

View Article and Find Full Text PDF

Gerodermia osteodysplastica (GO) is a segmental progeroid disorder caused by loss-of-function mutations in the GORAB gene, associated with early onset osteoporosis and bone fragility. A conditional mouse model of GO (Gorab) was generated in which the Gorab gene was deleted in long bones. We examined the biomechanical/functional relevance of the Gorab mutants as a premature aging model by characterizing bone composition, tissue-level strains, and whole-bone morphology and mechanical properties of the tibia.

View Article and Find Full Text PDF

Copy number variations (CNVs) often include noncoding sequences and putative enhancers, but how these rearrangements induce disease is poorly understood. Here we investigate CNVs involving the regulatory landscape of IHH (encoding Indian hedgehog), which cause multiple, highly localized phenotypes including craniosynostosis and synpolydactyly. We show through transgenic reporter and genome-editing studies in mice that Ihh is regulated by a constellation of at least nine enhancers with individual tissue specificities in the digit anlagen, growth plates, skull sutures and fingertips.

View Article and Find Full Text PDF

Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood.

View Article and Find Full Text PDF

The CRISPR/Cas technology enables targeted genome editing and the rapid generation of transgenic animal models for the study of human genetic disorders. Here we describe an autosomal recessive human disease in two unrelated families characterized by a split-foot defect, nail abnormalities of the hands, and hearing loss, due to mutations disrupting the SAM domain of the protein kinase ZAK. ZAK is a member of the MAPKKK family with no known role in limb development.

View Article and Find Full Text PDF

Gerodermia osteodysplastica is a hereditary segmental progeroid disorder affecting skin, connective tissues, and bone that is caused by loss-of-function mutations in GORAB. The golgin, RAB6-interacting (GORAB) protein localizes to the Golgi apparatus and interacts with the small GTPase RAB6. In this study, we used different approaches to shed more light on the recruitment of GORAB to this compartment.

View Article and Find Full Text PDF

Structural variations (SVs) contribute to the variability of our genome and are often associated with disease. Their study in model systems was hampered until now by labor-intensive genetic targeting procedures and multiple mouse crossing steps. Here we present the use of CRISPR/Cas for the fast (10 weeks) and efficient generation of SVs in mice.

View Article and Find Full Text PDF

Loss of the lysosomal ClC-7/Ostm1 2Cl(-)/H(+) exchanger causes lysosomal storage disease and osteopetrosis in humans and additionally changes fur colour in mice. Its conversion into a Cl(-) conductance in Clcn7(unc/unc) mice entails similarly severe lysosomal storage, but less severe osteopetrosis and no change in fur colour. To elucidate the basis for these phenotypical differences, we generated Clcn7(td/td) mice expressing an ion transport-deficient mutant.

View Article and Find Full Text PDF

Phytases are enzymes that liberate inorganic phosphates from phytate. In a previous study, a beta-propeller phytase (168phyA) from Bacillus subtilis was introduced into transgenic tobacco, which resulted in certain phenotypic changes. In the study described herein, the recombinant phytase (t168phyA) was purified from transgenic tobacco to near homogeneity by a three-step purification scheme.

View Article and Find Full Text PDF