Publications by authors named "Wing-Hung Ki"

The 'power frequency splitting' phenomenon is widely observed over critical coupling conditions in the wireless power transfer system. Frequency splitting occurs in the voltage gain and power delivered to the load (PDL) curve but not in the end-to-end power transfer efficiency curve. This brief has considered the mutual inductance model to analyze the relationship between characteristic frequencies and circuit parameters in the wireless series-parallel system.

View Article and Find Full Text PDF

To treat retinal degenerative diseases, a transcorneal electrical stimulation-based system is proposed, which consists of an eye implant and an external component. The eye implant is wirelessly powered and controlled by the external component to generate the required bi-polar current pattern for transcorneal stimulation with an amplitude range of 5 μA to 320 μA, a frequency range of 10 Hz to 160 Hz and a duty ratio range of 2.5% to 20%.

View Article and Find Full Text PDF

Wireless power transfer using reconfigurable resonant regulating (R(3)) rectification suffers from limited range in accommodating varying coupling and loading conditions. A primary-assisted regulation principle is proposed to mitigate these limitations, of which the amplitude of the rectifier input voltage on the secondary side is regulated by accordingly adjusting the voltage amplitude Veq on the primary side. A novel current-sensing method and calibration scheme track Veq on the primary side.

View Article and Find Full Text PDF

A full-wave active rectifier switching at 13.56 MHz with compensated bias current for a wide input range for wirelessly powered high-current biomedical implants is presented. The four diodes of a conventional passive rectifier are replaced by two cross-coupled PMOS transistors and two comparator- controlled NMOS switches to eliminate diode voltage drops such that high voltage conversion ratio and power conversion efficiency could be achieved even at low AC input amplitude |VAC|.

View Article and Find Full Text PDF