Publications by authors named "Wing Yui Ngan"

The rate and accuracy of translation hinges upon multiple components - including transfer RNA (tRNA) pools, tRNA modifying enzymes, and rRNA molecules - many of which are redundant in terms of gene copy number or function. It has been hypothesized that the redundancy evolves under selection, driven by its impacts on growth rate. However, we lack empirical measurements of the fitness costs and benefits of redundancy, and we have poor a understanding of how this redundancy is organized across components.

View Article and Find Full Text PDF

The possibility of breaking down cellulose-rich food waste through biofilm engineering was investigated. Six previously isolated strains from naturally degrading fruits and vegetables, screened for biofilm-forming ability and cellulolytic activity, were selected to enrich a biocarrier seeding microbial consortium. The food waste model used in this study was cabbage which was aerobically digested under repeated water rinsing and regular effluent drainage.

View Article and Find Full Text PDF

In this study, a phylogenic analysis was performed on pathogens previously identified in Hong Kong wet markets' cutting boards. Phylogenetic comparisons were made between phylotypes obtained in this study and environmental and clinical phylotypes for establishing the possible origin of selected bacterial species isolated from wet market cutting board ecosystems. The results reveal a strong relationship between wet market bacterial assemblages and environmental and clinically relevant phylotypes.

View Article and Find Full Text PDF

The presence of antibiotics such as erythromycin, even in trace amounts, has long been acknowledged for negatively impacting ecosystems in freshwater environments. Although many studies have focused on the impact of antibiotic pollution at a macroecological level, the impact of erythromycin on microecosystems, such as freshwater biofilms, is still not fully understood. This knowledge gap may be attributed to the lack of robust multispecies biofilm models for fundamental investigations.

View Article and Find Full Text PDF

Accessing food through wet markets is a common global daily occurrence, where fresh meat can be purchased to support an urbanizing world population. Similar to the wet markets in many other metropolitan cities in Asia, Hong Kong wet markets vary and are characterized by differing hygiene routines and access to essential modern technologies. The lack of risk assessments of food contact surfaces in these markets has led to substantial gaps in food safety knowledge and information that could help improve and maintain public health.

View Article and Find Full Text PDF

In recent years, most biofilm studies have focused on fundamental investigations using multispecies biofilm models developed preferentially in simulated naturally occurring low-nutrient medium than in artificial nutrient-rich medium. Because biofilm development under low-nutrient growth media is slow, natural media are often supplemented with an additional carbon source to increase the rate of biofilm formation. However, there are knowledge gaps in interpreting the effects of such supplementation on the resulting biofilm in terms of structure and microbial community composition.

View Article and Find Full Text PDF

Millions every day purchase their raw meat in wet markets around the globe, especially in Hong Kong city, where modern and a traditional way of living is made possible. While food hygiene standards in Hong Kong have more recently focused on the safety of meat sold in these wet markets, the hygienic surface level of wooden cutting boards used for processing meats is seldom observed. This original study performed microbial community profiling, as well as isolating and identifying various strains multiple wooden cutting boards from nine wet markets located on Hong Kong Island.

View Article and Find Full Text PDF

The quality of freshwater undoubtedly reflects the health of our surrounding environment, society, and economy, as these are supported by various freshwater ecosystems. Monitoring efforts have therefore been considered a vital means of ensuring the ecological health of freshwater environments. Nevertheless, most aquatic environmental monitoring strategies largely focus on bulk water sampling for analysis of physicochemical and key biological indicators, which for the most part do not consider pollution events that occur at any time between sampling events.

View Article and Find Full Text PDF