Publications by authors named "Wing Sze Tam"

Cyclen-peptide bioconjugates are usually prepared in multiple steps that require individual preparation and purification of the cyclic peptide and hydrophilic cyclen derivatives. An efficient strategy is discovered for peptide cyclization and functionalization toward lanthanide probe via three components intermolecular crosslinking on solid-phase peptide synthesis with high conversion yield. Multifunctionality can be conferred by introducing different modular parts or/and metal ions on the cyclen-embedded cyclopeptide.

View Article and Find Full Text PDF

Corroles have attracted increasing research interests in recent decades owing to their unique properties over porphyrins. However, the relatively inefficient and tedious synthetic procedures of corrole building blocks with functional groups for bioconjugation hindered their bioapplications. Herein, we report a highly efficient protocol to synthesize corrole-peptide conjugates with good yields (up to 63 %) without using prepared corrole building blocks.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is a common human-infected virus related to many diseases and cancers. Recently, some peptides have been found to serve targeting and therapeutic roles by inhibiting EBNA1, an oncoprotein of the EBV. We herein report the conjugation of the EBNA1-targeting peptides and porphyrins which can bring synergistic effects by both introducing more specific treatments (photodynamic therapy) and improving the biocompatibility of the photosensitizer and the peptides.

View Article and Find Full Text PDF

A low-molecular-weight, solid CO surrogate that only requires a low-power LED for activation to release 2 equiv of CO is reported. The surrogate can be universally implemented in various palladium-catalyzed carbonylative transformations. It is also compatible with protocols that employ blue-light to activate conventionally inaccessible substrates such as nonactivated alkyl halides.

View Article and Find Full Text PDF

Traditional fluorescent peptide chemical syntheses hinge on the use of limited fluorescent/dye-taggable unnatural amino acids and entail multiple costly purifications. Here we describe a facile and efficient protocol for construction of dipyrrins on the N-terminus with 20 natural and five unnatural amino acids and the lysine's side chain of selected peptides/peptide drugs through Fmoc-based solid-phase peptide synthesis. The new strategy enables the direct formation of boron-dipyrromethene (BODIPY)-peptide conjugates from simple aldehyde and pyrrole derivatives without pre-functionalization, and only requires a single-time chromatographic purification at the final stage.

View Article and Find Full Text PDF

G-Quadruplexes can be induced to form guanine-rich DNA sequences by certain small molecules or metal ions. In concert with an appropriate signal transducer, such as a fluorescent dye or a phosphorescent metal complex, the ligand-recognition event can be transduced into a luminescent response. This focus review aims to highlight recent examples of aptamer-based and metal-mediated G-quadruplex assays for the detection of small molecules and toxic substances in the last three years.

View Article and Find Full Text PDF