Neurotrophins are key regulators of neuronal survival and differentiation during development. Activation of their cognate receptors, Trk receptors, a family of receptor tyrosine kinases (RTKs), is pivotal for mediating the downstream functions of neurotrophins. Recent studies reveal that cyclin-dependent kinase 5 (Cdk5), a serine/threonine kinase, may modulate RTK signaling through phosphorylation of the receptor.
View Article and Find Full Text PDFNeurotrophin signaling plays important roles in regulating the survival, differentiation, and maintenance of neurons in the nervous system. Binding of neurotrophins to their cognate receptors Trks induces transactivation and phosphorylation of the receptor at several tyrosine residues. These phosphorylated tyrosine residues then serve as crucial docking sites for adaptor proteins containing a Src homology 2 or phosphotyrosine binding domain, which upon association with the receptor initiates multiple signaling events to mediate the action of neurotrophins.
View Article and Find Full Text PDF