Monoallelic inactivation of CCCTC-binding factor (CTCF) in human cancer drives altered methylated genomic states, altered CTCF occupancy at promoter and enhancer regions, and deregulated global gene expression. In patients with T cell acute lymphoblastic leukemia (T-ALL), we find that acquired monoallelic CTCF-inactivating events drive subtle and local genomic effects in nearly half of t(5; 14) (q35; q32.2) rearranged patients, especially when CTCF-binding sites are preserved in between the BCL11B enhancer and the TLX3 oncogene.
View Article and Find Full Text PDFImplementation of next-generation DNA sequencing (NGS) technology into routine diagnostic genome care requires strategic choices. Instead of theoretical discussions on the consequences of such choices, we compared NGS-based diagnostic practices in eight clinical genetic centers in the Netherlands, based on genetic testing of nine pre-selected patients with cardiomyopathy. We highlight critical implementation choices, including the specific contributions of laboratory and medical specialists, bioinformaticians and researchers to diagnostic genome care, and how these affect interpretation and reporting of variants.
View Article and Find Full Text PDFBackground: Establishing botanical extracts as globally-accepted polychemical medicines and a new paradigm for disease treatment, requires the development of high-level quality control metrics. Based on comprehensive chemical and biological fingerprints correlated with pharmacology, we propose a general approach called PhytomicsQC to botanical quality control.
Methods: Incorporating the state-of-the-art analytical methodologies, PhytomicsQC was employed in this study and included the use of liquid chromatography/mass spectrometry (LC/MS) for chemical characterization and chemical fingerprinting, differential cellular gene expression for bioresponse fingerprinting and animal pharmacology for in vivo validation.
We used cDNA-based genomic microarrays to examine DNA copy number changes in a panel of prostate tumors and found a previously undescribed amplicon on chromosome 17 containing a novel overexpressed gene that we termed prostate cancer gene 17 (PRC17). When overexpressed in 3T3 mouse fibroblast cells, PRC17 induced growth in low serum, loss of contact inhibition, and tumor formation in nude mice. The PRC17 gene product contains a GTPase-activating protein (GAP) catalytic core motif found in various Rab/Ypt GAPs, including RN-Tre.
View Article and Find Full Text PDFWe found that PPM1D, encoding a serine/threonine protein phosphatase, lies within an epicenter of the region at 17q23 that is amplified in breast cancer. We show that overexpression of this gene confers two oncogenic phenotypes on cells in culture: attenuation of apoptosis induced by serum starvation and transformation of primary cells in cooperation with RAS.
View Article and Find Full Text PDF