Publications by authors named "Winfried W C Gieskes"

Marine primary productivity is an important agent in the global cycling of carbon dioxide, a major 'greenhouse gas', and variations in the concentration of the ocean's phytoplankton biomass can therefore explain trends in the global carbon budget. Since the launch of satellite-mounted sensors globe-wide monitoring of chlorophyll, a phytoplankton biomass proxy, became feasible. Just as satellites, the Forel-Ule (FU) scale record (a hardly explored database of ocean colour) has covered all seas and oceans--but already since 1889.

View Article and Find Full Text PDF

The role of external ionic strength in diatom biosilica formation was assessed by monitoring the nanostructural changes in the biosilica of the two marine diatom species Thalassiosira punctigera and Thalassiosira weissflogii that was obtained from cultures grown at two distinct salinities. Using physicochemical methods, we found that at lower salinity the specific surface area, the fractal dimensions, and the size of mesopores present in the biosilica decreased. Diatom biosilica appears to be denser at the lower salinity that was applied.

View Article and Find Full Text PDF

All metazoan animals comprise a body plan of different complexity. Since--especially based on molecular and cell biological data--it is well established that all metazoan phyla, including the Porifera (sponges), evolved from a common ancestor the search for common, basic principles of pattern formation (body plan) in all phyla began. Common to all metazoan body plans is the formation of at least one axis that runs from the apical to the basal region; examples for this type of organization are the Porifera and the Cnidaria (diploblastic animals).

View Article and Find Full Text PDF

Silica becomes increasingly used in chemical, pharmaceutical, and (nano)technological processes, resulting in an increased demand for well-defined silicas and silica-based materials. The production of highly structured silica from cheap starting materials and under ambient conditions, which is a target for many researchers, is already realized in the formation of diatom biosilica, producing highly hierarchical ordered meso- and macropores silica structures. This notion formed the starting point in our integrative biomolecular and biomimetic study on diatom silicon biomineralization in which we have analyzed silica transformations and structure-direction in polymer-mediated silica syntheses using a combination of (ultra)small-angle X-ray scattering and (cryo)electron microscopy.

View Article and Find Full Text PDF

In diatom silicon biomineralization peptides are believed to play a role in silica precipitation and the consequent structure direction of the cell wall. Characterization of such peptides should reveal the nature of this organic-inorganic interaction, knowledge that may eventually well be used to expand the existing range of artificial silicas ("biomimicking"). Biochemical studies on Navicula pelliculosa revealed a set of proteins, which have a high affinity for a solid silica matrix; some were only eluted from the matrix when SDS-denaturation was applied.

View Article and Find Full Text PDF