Purpose: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system.
Methods: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome.
Reliable and comprehensive multi-omics analysis is essential for researchers to understand and explore complex biological systems more completely. is a model organism for Gram-positive spore-forming bacteria, and in-depth insight into the physiology and molecular basis of spore formation and germination in this organism requires advanced multilayer molecular data sets generated from the same sample. In this study, we evaluated two monophasic methods for polar and nonpolar compound extraction (acetonitrile/methanol/water; isopropanol/water, and 60% ethanol) and two biphasic methods (chloroform/methanol/water, and methyl tert-butyl ether/methanol/water) on coefficients of variation of analytes, identified metabolite composition, and the quality of proteomics profiles.
View Article and Find Full Text PDFMol Plant Microbe Interact
February 2024
The phloem-feeding insect is an important pest, responsible for the transmission of several crop-threatening virus species. While feeding, the insect secretes a cocktail of effectors to modulate plant defense responses. Here, we present a set of proteins identified in an artificial diet on which was salivating.
View Article and Find Full Text PDFBackground: Asexually developed fungal spores (conidia) are key for the massive proliferation and dispersal of filamentous fungi. Germination of conidia and subsequent formation of a mycelium network give rise to many societal problems related to human and animal fungal diseases, post-harvest food spoilage, loss of harvest caused by plant-pathogenic fungi and moulding of buildings. Conidia are highly stress resistant compared to the vegetative mycelium and therefore even more difficult to tackle.
View Article and Find Full Text PDFis a spore-forming human pathogen that is a burden to the food chain. Dormant spores are highly resistant to harsh environmental conditions, but lose resistance after germination. In this study, we investigate the spore proteome upon spore germination and outgrowth so as to obtain new insights into the molecular mechanisms involved.
View Article and Find Full Text PDFFluorescent fusion proteins were expressed in to visualize the germinosome by introducing a plasmid that carries fluorescent fusion proteins of germinant receptor GerR subunits or germinosome scaffold protein GerD. The effects of plasmid insertion and recombinant protein expression on the spore proteome were investigated. Proteomic analysis showed that overexpression of the target proteins had negligible effects on the spore proteome.
View Article and Find Full Text PDFMembrane proteins are fascinating since they play an important role in diverse cellular functions and constitute many drug targets. Membrane proteins are challenging to analyze. The spore, the most resistant form of known life, harbors a compressed inner membrane.
View Article and Find Full Text PDFvegetative cells switch to sporulation upon nutrient limitation. To investigate the proteome dynamics during sporulation, high-resolution time-lapse proteomics was performed in a cell population that was induced to sporulate synchronously. Here, we are the first to comprehensively investigate the changeover of sporulation regulatory proteins, coat proteins, and other proteins involved in sporulation and spore biogenesis.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
July 2021
Chemical cross-linking (CX) of proteins in vivo or in cell free extracts followed by mass spectrometric (MS) identification of linked peptide pairs (CXMS) can reveal protein-protein interactions (PPIs) both at a proteome wide scale and the level of cross-linked amino acid residues. However, error estimation at the level of PPI remains challenging in large scale datasets. Here we discuss recent advances in the recognition of spurious inter-protein peptide pairs and in diminishing the FDR for these PPI-signaling cross-links, such as the use of chromatographic retention time prediction, in order to come to a more reliable reporting of PPIs.
View Article and Find Full Text PDFIce-nucleation active (INA) bacteria can promote the growth of ice more effectively than any other known material. Using specialized ice-nucleating proteins (INPs), they obtain nutrients from plants by inducing frost damage and, when airborne in the atmosphere, they drive ice nucleation within clouds, which may affect global precipitation patterns. Despite their evident environmental importance, the molecular mechanisms behind INP-induced freezing have remained largely elusive.
View Article and Find Full Text PDFIn vivo chemical cross-linking combined with LCMSMS of digested extracts (in vivo CX-MS) can reveal stable and dynamic protein-protein interactions at proteome-wide scale and at peptide level. In vivo CX-MS requires a membrane permeable and cleavable cross-linker and a fast and sensitive search engine to identify the linked peptides. Here we explore the use of the search engine pLink 2 to identify cross-links induced in exponentially growing Bacillus subtilis cells treated in culture with bis(succinimidyl)-3-azidomethyl-glutarate (BAMG).
View Article and Find Full Text PDFCell division in bacteria is initiated by the polymerization of FtsZ at midcell in a ring-like structure called the Z-ring. ZapA and other proteins assist Z-ring formation and ZapA binds ZapB, which senses the presence of the nucleoids. The FtsZ⁻ZapA binding interface was analyzed by chemical cross-linking mass spectrometry (CXMS) under in vitro FtsZ-polymerizing conditions in the presence of GTP.
View Article and Find Full Text PDFPurpose: Bacterial endospores, the transmissible forms of pathogenic bacilli and clostridia, are heterogeneous multilayered structures composed of proteins. These proteins protect the spores against a variety of stresses, thus helping spore survival, and assist in germination, by interacting with the environment to form vegetative cells. Owing to the complexity, insolubility, and dynamic nature of spore proteins, it has been difficult to obtain their comprehensive protein profiles.
View Article and Find Full Text PDFIdentification of dynamic protein-protein interactions at the peptide level on a proteomic scale is a challenging approach that is still in its infancy. We have developed a system to cross-link cells directly in culture with the special lysine cross-linker bis(succinimidyl)-3-azidomethyl-glutarate (BAMG). We used the Gram-positive model bacterium Bacillus subtilis as an exemplar system.
View Article and Find Full Text PDFThe endospore is the dormant form of Bacillus subtilis and many other Firmicutes. By sporulation, these spore formers can survive very harsh physical and chemical conditions. Yet, they need to go through germination to return to their growing form.
View Article and Find Full Text PDFRationale: Since the last decade, mass spectrometry (MS) has become an essential technique for phosphoprotein analysis. Formidable analytical challenges of MS for phosphoprotein study are both the low abundance of phosphopeptides and the lack of an unambiguous diagnostic fragment ion for identification of phospho residues. These challenges can be met by a charge-based isolation of β-elimination products after tryptic digestion using diagonal strong cation-exchange chromatography.
View Article and Find Full Text PDFBackground: This study aimed at exploring the molecular physiological consequences of a major redirection of carbon flow in so-called cyanobacterial cell factories: quantitative whole-cell proteomics analyses were carried out on two (14)N-labelled Synechocystis mutant strains, relative to their (15)N-labelled wild-type counterpart. Each mutant strain overproduced one specific commodity product, i.e.
View Article and Find Full Text PDFCell division in Escherichia coli involves a set of essential proteins that assembles at midcell to form the so-called divisome. The divisome regulates the invagination of the inner membrane, cell wall synthesis, and inward growth of the outer membrane. One of the divisome proteins, FtsQ, plays a central but enigmatic role in cell division.
View Article and Find Full Text PDFTime-series transcript- and protein-profiles were measured upon initiation of carbon catabolite repression in Escherichia coli, in order to investigate the extent of post-transcriptional control in this prototypical response. A glucose-limited chemostat culture was used as the CCR-free reference condition. Stopping the pump and simultaneously adding a pulse of glucose, that saturated the cells for at least 1h, was used to initiate the glucose response.
View Article and Find Full Text PDFUnlabelled: A high molecular weight fraction of a HeLa cell nuclear extract containing nearly 1100 identified proteins was cross-linked with bis(succinimidyl)-3-azidomethyl glutarate (BAMG). The azido group in cross-linked peptides can be reduced to an amine group. Reduction enables isolation of cross-linked peptides by diagonal strong cation exchange chromatography.
View Article and Find Full Text PDFKnowledge of spatial proximity of amino acid residues obtained by chemical cross-linking and mass spectrometric analysis provides information about protein folding, protein-protein interactions and topology of macromolecular assemblies. We show that the use of bis(succinimidyl)-3-azidomethyl glutarate as a cross-linker provides a solution for two major analytical problems of cross-link mapping by peptide fragment fingerprinting (PFF) from complex sequence databases, i.e.
View Article and Find Full Text PDFChemical cross-linking of protein complexes combined with mass spectrometry is a powerful approach to obtain 3-D structural information by revealing amino residues that are in close spatial proximity. To increase the efficiency of mass spectrometric analysis, we have demonstrated the selective enrichment of cross-linked peptides from the 350 kDa protein complex RNA polymerase (RNAP) from Bacillus subtilis. Bis(succinimidyl)-3-azidomethyl glutarate was used as a cross-linker along with an azide-reactive cyclooctyne-conjugated resin to capture target peptides.
View Article and Find Full Text PDFEnzyme reprofiling in bacteria during adaptation from one environmental condition to another may be regulated by both transcription and translation. However, little is known about the contribution of translational regulation. Recently, we have developed a pulse labeling method using the methionine analog azidohomoalanine to determine the relative amounts of proteins synthesized by Escherichia coli in a brief time frame upon a change in environmental conditions.
View Article and Find Full Text PDFCross-links between amino acid residues in close proximity can provide distance constraints for the validation of models of the 3D structure proteins. The mapping of cross-links by the identification of linked peptides in proteolytic digests is facilitated by cleavable cross-linkers that enable isolation of the cleavage products while preserving information about the linkage. We present an amine-specific cross-linker, bis(succinimidyl)-3-azidomethyl glutarate (BAMG), that fulfils these requirements.
View Article and Find Full Text PDFA soluble hydrogenase from Allochromatium vinosum was purified. It consisted of a large (M (r) = 52 kDa) and a small (M (r) = 23 kDa) subunit. The genes encoding for both subunits were identified.
View Article and Find Full Text PDF