Micromachines (Basel)
April 2023
In this paper, the behavior of the Bi-Material Cantilever (B-MaC) response deflection upon fluidic loading was experimentally studied and modeled for bilayer strips. A B-MaC consists of a strip of paper adhered to a strip of tape. When fluid is introduced, the paper expands while the tape does not, which causes the structure to bend due to strain mismatch, similar to the thermal loading of bi-metal thermostats.
View Article and Find Full Text PDFMicromachines (Basel)
September 2022
The novel paper-based Bi-Material Cantilever (B-MaC) valve allows the autonomous loading and control of multiple fluid reagents which contributes to the accurate operation of paper-based microfluidic devices utilized for biological and chemical sensing applications. In this paper, an extensive parametric study is presented to evaluate the effects of key geometric parameters of the valve, such as paper direction, cantilever width, paper type, tape type, and sample volume, in addition to the effects of relative humidity and temperature on the functionality of the B-MaC and to provide a better understanding of the rate of fluid flow and resulting deflection of the cantilever. Machine direction, cantilever width, paper type, and tape type were found to be important parameters that affect the B-MAC's activation time.
View Article and Find Full Text PDF