Ordered nanoporous polymer membranes offer opportunities for systematically probing the mechanisms of ion transport under confinement and for realizing useful materials for electrochemical devices. Here, we examine the impact of morphology and ion hydration on the transport of hydroxide and bromide anions in nanostructured polymer membranes with 1 nm scale pores. We use aqueous lyotropic self-assembly of an amphiphilic monomer, with a polymerizable surfactant to create direct hexagonal (H) and gyroid mesophases.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Designing a functional surface that selectively adsorbs nanoparticles based on their size and shape is essential for developing an advanced adsorption-based, postsynthesis nanoparticle separation device. We demonstrate selective adsorption of larger nanoparticles from solution onto a polyelectrolyte brush by tuning the salt concentration. Specifically, a positively charged polyelectrolyte brush is created by converting pyridine groups of poly(2-vinylpyridine) to -methylpyridinium groups using methyl iodide.
View Article and Find Full Text PDFThis study examines nanoparticle diffusion in crowded polymer nanocomposites by diffusing small AlO nanoparticles (NPs) in SiO-loaded P2VP matrices. Time-of-flight secondary ion mass spectroscopy (ToF-SIMS) measures AlO NP diffusion coefficients within a homogeneous PNC background of larger, immobile SiO NPs. By developing a geometric model for the average interparticle distance in a system with two NP sizes, we quantify nanocomposite confinement relative to the AlO NP size with a bound layer.
View Article and Find Full Text PDFWhile recent efforts have shown how local structure plays an essential role in the dynamic heterogeneity of homogeneous glass-forming materials, systems containing interfaces such as thin films or composite materials remain poorly understood. It is known that interfaces perturb the molecular packing nearby, however, numerous studies show the dynamics are modified over a much larger range. Here, we examine the dynamics in polymer nanocomposites (PNCs) using a combination of simulations and experiments and quantitatively separate the role of polymer packing from other effects on the dynamics, as a function of distance from the nanoparticle surfaces.
View Article and Find Full Text PDFPrecise control of nanoparticles at interfaces can be achieved by designing stimuli-responsive surfaces that have tunable interactions with nanoparticles. In this study, we demonstrate that a polymer brush can selectively adsorb nanoparticles according to size by tuning the pH of the buffer solution. Specifically, we developed a facile polymer brush preparation method using a symmetric polystyrene--poly(2-vinylpyridine) (PS--P2VP) block copolymer deposited on a grafted polystyrene layer.
View Article and Find Full Text PDFPolyolefins compose the majority of plastic waste, but conventional mechanical recycling degrades their properties, thereby reducing their value. We report the functionalization of a model for dehydrogenated polyethylene, polycyclooctene (PCOE), with thiol-ene click chemistry to install pendant hydroxyl ethyl thioethers. Functionalization of PCOE using mercaptoethanol via thiol-ene click chemistry yielded functionalization between 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
Fibrous soft actuators with high molecular anisotropy are of interest for shape morphing from 1D to 2D and 3D in response to external stimuli with high actuation efficiency. Nevertheless, few have fabricated fibrous actuators with controlled molecular orientations and stiffness. Here, we fabricate filaments from liquid crystal networks (LCNs) with segmental crosslinking density and gradient porosity from a mixture of di-acrylate mesogenic monomers and small-molecule nematic or smectic liquid crystals (LCs) filled in a capillary.
View Article and Find Full Text PDFThe double gyroid structure was first reported in diblock copolymers about 30 years ago, and the complexity of this morphology relative to the other ordered morphologies in block copolymers continues to fascinate the soft matter community. The double gyroid microphase-separated morphology has co-continuous domains of both species, and the minority phase is subdivided into two interpenetrating network structures. In addition to diblock copolymers, this structure has been reported in similar systems including diblock copolymers blended with one or two homopolymers and ABA-type triblock copolymers.
View Article and Find Full Text PDFWe demonstrate enhanced Li transport through the selectively solvated ionic layers of a single-ion conducting polymer. The polymer is a precisely segmented ion-containing multiblock copolymers with well-defined LiSO ionic layers between crystallized linear aliphatic 18-carbon blocks. X-ray scattering reveals that the dimethyl sulfoxide (DMSO) molecules selectively solvate the ionic layers without disrupting the crystallization of the polymer backbone.
View Article and Find Full Text PDFWe demonstrate that ionic functionality in a multiblock architecture produces highly ordered and sub-3 nm nanostructures in thin films, including bicontinuous double gyroids. At 40 °C, precise ion-containing multiblock copolymers of poly(ethylene--lithium sulfosuccinate ester) (PESLi, = 12 or 18) exhibit layered ionic assemblies parallel to the substrate. These ionic layers are separated by crystalline polyethylene blocks with the polymer backbones perpendicular to the substrate.
View Article and Find Full Text PDFWe investigated the temperature-dependent phase behavior and interaction parameter of polyethylene-based multiblock copolymers with pendant ionic groups. These step-growth polymers contain short polyester blocks with a single LiSO group strictly alternating with polyethylene blocks of -carbons (PESLi, = 12, 18, 23). At room temperature, these polymers exhibit layered morphologies with semicrystalline polyethylene blocks.
View Article and Find Full Text PDFPolymers bearing phosphonic acid groups have been proposed as anhydrous proton-conducting membranes at elevated operating temperatures for applications in fuel cells. However, the synthesis of phosphonated polymers and the control over the nanostructure of such polymers is challenging. Here, we report the straightforward synthesis of phosphonic acid-terminated, long-chain aliphatic materials with precisely 26 and 48 carbon atoms (CPA and CPA).
View Article and Find Full Text PDFIn polymer nanoparticle composites (PNCs) with attractive interactions between nanoparticles (NPs) and polymers, a bound layer of the polymer forms on the NP surface, with significant effects on the macroscopic properties of the PNCs. The adsorption and wetting behaviors of polymer solutions in the presence of a solid surface are critical to the fabrication process of PNCs. In this study, we use both classical density functional theory (cDFT) and molecular dynamics (MD) simulations to study dilute and semi-dilute solutions of short polymer chains near a solid surface.
View Article and Find Full Text PDFUnderstanding the structure and dynamics of polymers under confinement has been of widespread interest, and one class of polymers that have received comparatively little attention under confinement is that of ring polymers. The properties of non-concatenated ring polymers can also be important in biological fields because ring polymers have been proven to be a good model to study DNA organization in the cell nucleus. From our previous study, linear polymers in a cylindrically confined polymer melt were found to segregate from each other as a result of the strong correlation hole effect that is enhanced by the confining surfaces.
View Article and Find Full Text PDFThe use of nanoparticle reinforced polymer matrices in continuous fiber composites for infrastructure applications requires a comprehensive understanding of viscoelastic creep. Critical parameters affecting the mechanical reinforcement offered by nanoparticles include nanoparticle size and concentration, as well as the interaction between the nanoparticle surface and polymer matrix. Here, we study the viscoelastic creep of nanocomposite systems comprised of glassy thermoplastic polymers and spherical silica nanoparticles of varying sizes and surface functionalization using a dynamic mechanical analysis (DMA) accelerated testing methodology.
View Article and Find Full Text PDFControlling the self-assembled nanoscale ionic aggregates in single-ion conducting polymers is a crucial step toward exceptional transport properties. We report a series of precisely segmented polyethylene-like materials containing sulfonate groups (PES23) with Li, Na, Cs, or NBu counterions synthesized from step-growth polymerization. At room temperature, all polymers are semicrystalline with well-defined nanoscale ionic layers separated by 35-38 Å, depending on the cation.
View Article and Find Full Text PDFThis review concerns modeling studies of the fundamental problem of entangled (reptational) homopolymer diffusion in melts and nanocomposite materials in comparison to experiments. In polymer melts, the developed united atom and multibead spring models predict an exponent of the molecular weight dependence to the polymer diffusion very similar to experiments and the tube reptation model. There are rather unexplored parameters that can influence polymer diffusion such as polymer semiflexibility or polydispersity, leading to a different exponent.
View Article and Find Full Text PDFWe performed microsecond-long, atomistic molecular dynamics simulations on a series of precise poly(ethylene-co-acrylic acid) ionomers neutralized with lithium, with three different spacer lengths between acid groups on the ionomers and at two temperatures. Ionic aggregates form in these systems with a variety of shapes ranging from isolated aggregates to percolated aggregates. At the lower temperature of 423 K, the ionic aggregate morphologies do not reach a steady-state distribution over the course of the simulations.
View Article and Find Full Text PDFRecent advances in polymer synthesis have allowed remarkable control over chain microstructure and conformation. Capitalizing on such developments, here we create well-controlled chain folding in sulfonated polyethylene, leading to highly uniform hydrated acid layers of subnanometre thickness with high proton conductivity. The linear polyethylene contains sulfonic acid groups pendant to precisely every twenty-first carbon atom that induce tight chain folds to form the hydrated layers, while the methylene segments crystallize.
View Article and Find Full Text PDFLinear polyethylenes with functional groups at precise intervals along the backbone possess a number of remarkable properties, but the current synthetic methods that produce these precise polymers are difficult to scale up beyond the laboratory setting. When evaluating alternative synthetic routes, a critical question is how precise must the polymer microstructure be to achieve the properties of interest? As a first step in answering this question, we present morphological characterization of a precise polymer-that is, an acid-containing polymer wherein the acid groups are separated by either or + 1 methylene groups. We find that the size scale and uniformity of the amorphous morphologies of the nearly precise acid-containing polymer and its sodium-neutralized ionomer are essentially indistinguishable from the precise polymers based on X-ray scattering.
View Article and Find Full Text PDFNanoparticle and polymer dynamics in nanocomposites containing spherical nanoparticles were investigated by means of molecular dynamics simulations. We show that the polymer diffusivity decreases with nanoparticle loading due to an increase of the interfacial area created by nanoparticles, in the polymer matrix. We show that small sized nanoparticles can diffuse much faster than that predicted from the Stokes-Einstein relation in the dilute regime.
View Article and Find Full Text PDFWe measure the center-of-mass diffusion of poly(methyl methacrylate) (PMMA)-grafted nanoparticles (NPs) in unentangled to slightly entangled PMMA melts using Rutherford backscattering spectrometry. These grafted NPs diffuse ∼100 times slower than predicted by the Stokes-Einstein relation assuming a viscosity equal to bulk PMMA and a hydrodynamic NP size equal to the NP core diameter, 2R = 4.3 nm.
View Article and Find Full Text PDFIn this review we summarize recent efforts in understanding nano-aggregation in acid- and ion-containing polymer systems. The acid and ionic groups have specific interactions that drive aggregation and alter polymer behavior at the nano-, micro-, and bulk length scales. Advancements in synthetic methods, characterization techniques, and computer simulations have enabled researchers to better understand the morphologies and dynamics, particularly at the nanoscale.
View Article and Find Full Text PDFPrecise control over polymer architecture unlocks the potential for engineered self-assembled crystal structures with useful features on the nanometer length scale. Here we elucidate the structure of the ordered phase of a semicrystalline, functional polyethylene having a precise linear architecture, namely, pendant carboxylic acid groups precisely every 21st backbone carbon atom. By comparing the results of atomistic molecular dynamics simulations with experimental X-ray scattering and Raman spectroscopy data, we find that the polymer chains are folded in a hairpin manner near each carboxylic acid group, giving rise to multiple embedded layers of functional groups that have an interlayer distance of 2.
View Article and Find Full Text PDF