Background: The globus pallidus internus is the main target for the treatment of dystonia by deep brain stimulation. Unfortunately, for some genetic etiologies, the therapeutic outcome of dystonia is less predictable. In particular, therapeutic outcomes for deep brain stimulation in craniocervical and orolaryngeal dystonia in DYT6-positive patients are poor.
View Article and Find Full Text PDFPolyunsaturated free fatty acids (FFAs) such as arachidonic acid, released by phospholipase activity on membrane phospholipids, have long been considered beneficial for learning and memory and are known modulators of neurotransmission and synaptic plasticity. However, the precise nature of other FFA and phospholipid changes in specific areas of the brain during learning is unknown. Here, using a targeted lipidomics approach to characterise FFAs and phospholipids across the rat brain, we demonstrated that the highest concentrations of these analytes were found in areas of the brain classically involved in fear learning and memory, such as the amygdala.
View Article and Find Full Text PDFDeep brain stimulation (DBS) is a promising treatment for severe, treatment-resistant obsessive-compulsive disorder (OCD). Here, nine participants (four females, mean age 47.9 ± 10.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2019
The distributed sense of touch forms an essential component that defines real-time perception and situational awareness in humans. Electronic skins are an emerging technology in conferring an artificial sense of touch for smart human-machine interfaces. However, assigning a conformably distributed sense of touch over a large area has been challenging to replicate in modern medical, social, and industrial robots.
View Article and Find Full Text PDFObjectives: Our goal was to provide a detailed analysis of neurons' electrophysiological activity recorded in sub-territories of Globus pallidus internus (GPi) used as Deep Brain Stimulation (DBS) targets for these clinical conditions to potentially assist electrode targeting.
Methods: We used intra-operative microelectrode recording during stereotactic neurosurgery to guide implantation of DBS lead.
Results: Units in the medial anterior part of GPi of 7 Tourette's syndrome patients under general anesthesia were firing at mean and median rate of 32.
Objectives: A20 is an important endogenous regulator of inflammation. Single nucleotide polymorphisms in A20 have been associated with various immune-mediated inflammatory diseases, and cell-specific deletion of A20 results in diverse inflammatory phenotypes. Our goal was to delineate the underlying mechanisms of joint inflammation in myeloid-specific A20-deficient mice (A20 mice).
View Article and Find Full Text PDFIn quiescent states such as anesthesia and slow wave sleep, cortical networks show slow rhythmic synchronized activity. In sensory cortices this rhythmic activity shows a stereotypical pattern that is recapitulated by stimulation of the appropriate sensory modality. The amygdala receives sensory input from a variety of sources, and in anesthetized animals, neurons in the basolateral amygdala (BLA) show slow rhythmic synchronized activity.
View Article and Find Full Text PDFThis scientific commentary refers to ‘The integrative role of the pedunculopontine nucleus in human gait’, by Lau . (doi:10.1093/brain/awv047).
View Article and Find Full Text PDFAntinuclear antibodies are a hallmark feature of generalized autoimmune diseases, including systemic lupus erythematosus and systemic sclerosis. However, the processes underlying the loss of tolerance against nuclear self-constituents remain largely unresolved. Using mice deficient in lymphotoxin and Hox11, we report that approximately 25% of mice lacking secondary lymphoid organs spontaneously develop specific antinuclear antibodies.
View Article and Find Full Text PDFThe role of the p75 neurotrophin receptor (p75(NTR)) in adult cholinergic basal forebrain (cBF) neurons is unclear due to conflicting results from previous studies and to limitations of existing p75(NTR)-knock-out mouse models. In the present study we used a novel conditional knock-out line (ChAT-cre p75(in/in)) to assess the role of p75(NTR) in the cBF by eliminating p75(NTR) in choline acetyl-transferase-expressing cells. We show that the absence of p75(NTR) results in a lasting increase in cBF cell number, cell size, and cholinergic innervation to the cortex.
View Article and Find Full Text PDFThis paper describes the design and implementation of a wireless neural telemetry system that enables new experimental paradigms, such as neural recordings during rodent navigation in large outdoor environments. RoSco, short for Rodent Scope, is a small lightweight user-configurable module suitable for digital wireless recording from freely behaving small animals. Due to the digital transmission technology, RoSco has advantages over most other wireless modules of noise immunity and online user-configurable settings.
View Article and Find Full Text PDFThe pedunculopontine nucleus (PPN) is a part of the mesencephalic locomotor region and is thought to be important for the initiation and maintenance of gait. Lesions of the PPN induce gait deficits, and the PPN has therefore emerged as a target for deep brain stimulation for the control of gait and postural disability. However, the role of the PPN in gait control is not understood.
View Article and Find Full Text PDFBackground & Aims: Immunometabolism is an emerging field of clinical investigation due to the obesity epidemic worldwide. A reciprocal involvement of immune mediators in the body energy metabolism has been recognized for years, but is only partially understood. We hypothesized that the adipokine leptin could provide an important modulator of iNKT cells.
View Article and Find Full Text PDFLoss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic) or uncued (idiothetic) recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation.
View Article and Find Full Text PDFExtracellular multi-unit recording is a widely used technique to study spontaneous and evoked neuronal activity in awake behaving animals. These recordings are done using either single-wire or multiwire electrodes such as tetrodes. In this study we have tested the ability of single-wire electrodes to discriminate activity from multiple neurons under conditions of varying noise and neuronal cell density.
View Article and Find Full Text PDFThe critical role of oligodendrocytes in producing and maintaining myelin that supports rapid axonal conduction in CNS neurons is well established. More recently, additional roles for oligodendrocytes have been posited, including provision of trophic factors and metabolic support for neurons. To investigate the functional consequences of oligodendrocyte loss, we have generated a transgenic mouse model of conditional oligodendrocyte ablation.
View Article and Find Full Text PDFJ Neurophysiol
December 2010
Slow oscillations (<1 Hz) in neural activity occur during sleep and quiet wakefulness in both animals and humans. Single-cell recordings in cortical neurons have shown that these oscillations are driven by a combination of excitatory and inhibitory synaptic inputs. During up-states, although the ratio between them varies between cells, excitation and inhibition follow similar time courses.
View Article and Find Full Text PDFSlow oscillations (<1 Hz) in neural activity occur during sleep and quiet wakefulness in both animals and humans. Here we show that in urethan-anesthetized animals, neurons in the basolateral amygdala in vivo display a slow oscillation between resting membrane potential (down-state) and depolarized potentials (up-states) occurring at a frequency of approximately 0.3 Hz.
View Article and Find Full Text PDFThe knowledge of the mechanisms regulating electric neuronal activity is fragmented by the wide variety of techniques and experimental models currently used in neurophysiological research. The interest and importance of the results obtained in any research is improved when interpreted in the perspective of the organism functioning as a whole in physiological conditions. Such interpretation, freed of the constraints imposed by the different techniques and experimental conditions used, is especially important when discussing together results obtained at the behavioral, cellular, and molecular level.
View Article and Find Full Text PDFDopamine (DA) neurons located in the substantia nigra pars compacta release DA not only via axonal terminals, affecting neurotransmission within the striatum, but also via dendrites, some of which densely protrude into the substantia nigra pars reticulata (SNr). Although the interaction of dendritically released DA with somatodendritic autoreceptors regulates DA cell activity, released DA may also affect SNr neurons. These cells, however, lack postsynaptic DA receptors, making it unclear how locally released DA modulates their activity.
View Article and Find Full Text PDFIt is hypothesized that substantia nigra pars reticulata neurons become overactive during a deficit of dopamine transmission. In this study, we examined how acute dopamine receptor blockade (SCH23390 and eticlopride) affects impulse activity of substantia nigra pars reticulata neurons and their response to iontophoretic gamma-amino-n-butyric acid in awake, unrestrained rats. No changes in discharge rate were found during complete dopamine receptor blockade, but these neurons showed a diminished response to gamma-amino-n-butyric acid, suggesting gamma-amino-n-butyric acid receptor hyposensitivity.
View Article and Find Full Text PDFSubstantia nigra reticulata is the major output structure of the basal ganglia involved in somatosensory integration and organization of movement. While previous work in vitro and in anesthetized animal preparations suggests that these neurons are autoactive and points to GABA as a primary input regulating their activity, single-unit recording coupled with iontophoresis was used in awake, unrestrained rats to further clarify the role of tonic and phasic GABA input in maintenance and fluctuations of substantia nigra reticulata neuronal activity under physiologically relevant conditions. In contrast to glutamate, which was virtually ineffective at stimulating substantia nigra reticulata neurons in awake rats, all substantia nigra reticulata neurons tested were inhibited by iontophoretic GABA and strongly excited by bicuculline, a GABA-A receptor blocker.
View Article and Find Full Text PDFAlthough it is evident that general anesthesia should affect impulse activity and neurochemical responses of central neurons, there are limited studies in which these parameters were compared in both awake and anesthetized animal preparations. We used single-unit recording coupled with iontophoresis to examine impulse activity and responses of substantia nigra pars reticulata (SNr) neurons to GABA, glutamate (GLU), and dopamine (DA) in rats in awake, unrestrained conditions and during chloral hydrate anesthesia. SNr neurons in both conditions had similar organization of impulse flow, but during anesthesia, they have lower mean rates and discharge variability than in awake conditions.
View Article and Find Full Text PDFHigh-frequency stimulation of the subthalamic nucleus (HFS-STN) is an effective treatment for alleviating the motor symptoms of parkinsonian patients. However, the neurochemical basis of its effects remains unknown. We showed previously that 1 h of HFS-STN in normal rats increases extracellular glutamate (Glu) level in the output nuclei of the STN, the globus pallidus (GP), and the substantia nigra pars reticulata (SNr), consistent with an increase in the activity of STN neurons.
View Article and Find Full Text PDFSubstantia nigra pars reticulata (SNr) receives both GABAergic and glutamatergic (GLU) inputs that are believed to act together to regulate neuronal activity in this structure. To examine the role of these inputs, single-unit recording was coupled with iontophoresis of GLU and GABA in rats under two conditions: awake, unrestrained and under chloral hydrate anesthesia. Although GABA potently inhibited SNr cells in both conditions, freely moving rats showed lower sensitivity than anesthetized animals.
View Article and Find Full Text PDF