Publications by authors named "Wim Z Hoek"

Holocene drift-sand activity in the northwest European sand belt is commonly directly linked to population pressure (agricultural activity) or to climate change (e.g. storminess).

View Article and Find Full Text PDF

The high Arctic is the fastest warming region on Earth, evidenced by extreme near-surface temperature increase in non-summer seasons, recent rapid sea ice decline and permafrost melting since the early 1990's. Understanding the impact of climate change on the sensitive Arctic ecosystem to climate change has so far been hampered by the lack of time-constrained, high-resolution records and by implicit climate data analyses. Here, we show evidence of sharp growth in freshwater green algae as well as distinct diatom assemblage changes since ~1995, retrieved from a high-Arctic (80 °N) lake sediment record on Barentsøya (Svalbard).

View Article and Find Full Text PDF

Comparisons of climate model hindcasts with independent proxy data are essential for assessing model performance in non-analogue situations. However, standardized palaeoclimate data sets for assessing the spatial pattern of past climatic change across continents are lacking for some of the most dynamic episodes of Earth's recent past. Here we present a new chironomid-based palaeotemperature dataset designed to assess climate model hindcasts of regional summer temperature change in Europe during the late-glacial and early Holocene.

View Article and Find Full Text PDF

The controversial Younger Dryas impact hypothesis suggests that at the onset of the Younger Dryas an extraterrestrial impact over North America caused a global catastrophe. The main evidence for this impact--after the other markers proved to be neither reproducible nor consistent with an impact--is the alleged occurrence of several nanodiamond polymorphs, including the proposed presence of lonsdaleite, a shock polymorph of diamond. We examined the Usselo soil horizon at Geldrop-Aalsterhut (The Netherlands), which formed during the Allerød/Early Younger Dryas and would have captured such impact material.

View Article and Find Full Text PDF