The spatiotemporal configuration of genes with distal regulatory elements is believed to be crucial for transcriptional control, but full mechanistic understanding is lacking. We combine simultaneous live tracking of pairs of genomic loci and nascent transcripts with molecular dynamics simulations to assess the gene and its enhancer. We find that both loci exhibit more constrained mobility than control sequences due to stalled cohesin at CCCTC-binding factor sites.
View Article and Find Full Text PDFSingle-molecule imaging inside living cells has revealed that transcription factors (TFs) bind to DNA transiently, but a long-standing question is how this transient binding is related to transcription activation. Here, we devised a microscopy method to simultaneously measure transient TF binding at a single locus and the effect of these binding events on transcription. We show that DNA binding of the yeast TF Gal4 activates transcription of a target gene within a few seconds, with at least ∼20% efficiency and with a high initiation rate of ∼1 RNA/s.
View Article and Find Full Text PDFDNA supercoiling has emerged as a major contributor to gene regulation in bacteria, but how DNA supercoiling impacts transcription dynamics in eukaryotes is unclear. Here, using single-molecule dual-color nascent transcription imaging in budding yeast, we show that transcriptional bursting of divergent and tandem GAL genes is coupled. Temporal coupling of neighboring genes requires rapid release of DNA supercoils by topoisomerases.
View Article and Find Full Text PDFMany transcription factors (TFs) localize in nuclear clusters of locally increased concentrations, but how TF clustering is regulated and how it influences gene expression is not well understood. Here, we use quantitative microscopy in living cells to study the regulation and function of clustering of the budding yeast TF Gal4 in its endogenous context. Our results show that Gal4 forms clusters that overlap with the GAL loci.
View Article and Find Full Text PDFThis protocol describes how to image fluorescently tagged proteins, RNA, or DNA inside living cells at the single-molecule level. Imaging inside living cells, as opposed to fixed materials, gives access to real-time kinetic information. Although various single-molecule imaging applications are discussed, we focus on imaging of gene transcription at the single-RNA level.
View Article and Find Full Text PDFWe investigate the mechanical interplay between the spatial organization of the actin cytoskeleton and the shape of animal cells adhering on micropillar arrays. Using a combination of analytical work, computer simulations and in vitro experiments, we demonstrate that the orientation of the stress fibers strongly influences the geometry of the cell edge. In the presence of a uniformly aligned cytoskeleton, the cell edge can be well approximated by elliptical arcs, whose eccentricity reflects the degree of anisotropy of the cell's internal stresses.
View Article and Find Full Text PDFWithin cells, the spatial compartmentalization of thousands of distinct proteins serves a multitude of diverse biochemical needs. Correlative super-resolution (SR) fluorescence and electron microscopy (EM) can elucidate protein spatial relationships to global ultrastructure, but has suffered from tradeoffs of structure preservation, fluorescence retention, resolution, and field of view. We developed a platform for three-dimensional cryogenic SR and focused ion beam-milled block-face EM across entire vitreously frozen cells.
View Article and Find Full Text PDFWe investigate the geometrical and mechanical properties of adherent cells characterized by a highly anisotropic actin cytoskeleton. Using a combination of theoretical work and experiments on micropillar arrays, we demonstrate that the shape of the cell edge is accurately described by elliptical arcs, whose eccentricity expresses the degree of anisotropy of the internal cell stresses. This results in a spatially varying tension along the cell edge, that significantly affects the traction forces exerted by the cell on the substrate.
View Article and Find Full Text PDFLight upconversion by triplet-triplet annihilation (TTA-UC) in nanoparticles has received considerable attention for bioimaging and light activation of prodrugs. However, the mechanism of TTA-UC is inherently sensitive for quenching by molecular oxygen. A potential oxygen protection strategy is the coating of TTA-UC nanoparticles with a layer of oxygen-impermeable material.
View Article and Find Full Text PDFLight upconversion is a very powerful tool in bioimaging as it can eliminate autofluorescence, increase imaging contrast, reduce irradiation damage, and increase excitation penetration depth in vivo. In particular, triplet-triplet annihilation upconverting (TTA-UC) nanoparticles and liposomes offer high upconversion efficiency at low excitation power. However, TTA-UC is quenched in air by oxygen, which also leads to the formation of toxic singlet oxygen.
View Article and Find Full Text PDFUnderstanding of the regulation mechanisms of CXCR4 signaling is essential for revealing its role in physiological and pathological processes. Though biochemical pathways following CXCR4 activation by its ligand CXCL12 are well established, knowledge about the receptor dynamics on the plasma membrane remains limited. Here we used Ewing sarcoma-derived cells to unravel the processes that are involved in regulating CXCR4 dynamics on the plasma membrane during receptor signaling.
View Article and Find Full Text PDFCollagen fibrils form extracellular networks that regulate cell functions and provide mechanical strength to tissues. Collagen fibrillogenesis is an entropy-driven process promoted by warming and reversed by cooling. Here, we investigate the influence of noncovalent interactions mediated by the collagen triple helix on fibril stability.
View Article and Find Full Text PDF