Publications by authors named "Wim K Bleeker"

Daratumumab (DARA) is a human CD38-specific IgG1 antibody that is in clinical development for the treatment of multiple myeloma (MM). The potential for IgG1 antibodies to induce macrophage-mediated phagocytosis, in combination with the known presence of macrophages in the tumor microenvironment in MM and other hematological tumors, led us to investigate the contribution of antibody-dependent, macrophage-mediated phagocytosis to DARA's mechanism of action. Live cell imaging revealed that DARA efficiently induced macrophage-mediated phagocytosis, in which individual macrophages rapidly and sequentially engulfed multiple tumor cells.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADC) are emerging as powerful cancer treatments that combine antibody-mediated tumor targeting with the potent cytotoxic activity of toxins. We recently reported the development of a novel ADC that delivers the cytotoxic payload monomethyl auristatin E (MMAE) to tumor cells expressing tissue factor (TF). By carefully selecting a TF-specific antibody that interferes with TF:FVIIa-dependent intracellular signaling, but not with the procoagulant activity of TF, an ADC was developed (TF-011-MMAE/HuMax-TF-ADC) that efficiently kills tumor cells, with an acceptable toxicology profile.

View Article and Find Full Text PDF

Unlabelled: Longitudinal imaging of intratumoral distributions of antibodies in vivo in mouse cancer models is of great importance for developing cancer therapies. In this study, multipinhole SPECT with sub-half-millimeter resolution was tested for exploring intratumoral distributions of radiolabeled antibodies directed toward the epidermal growth factor receptor (EGFr) and compared with full 3-dimensional target expression assessed by immunohistochemistry.

Methods: (111)In-labeled zalutumumab, a human monoclonal human EGFr-targeting antibody, was administered at a nonsaturating dose to 3 mice with xenografted A431 tumors exhibiting high EGFr expression.

View Article and Find Full Text PDF

The human epidermal growth factor receptor (HER)2 provides an excellent target for selective delivery of cytotoxic drugs to tumor cells by antibody-drug conjugates (ADC) as has been clinically validated by ado-trastuzumab emtansine (Kadcyla(TM)). While selecting a suitable antibody for an ADC approach often takes specificity and efficient antibody-target complex internalization into account, the characteristics of the optimal antibody candidate remain poorly understood. We studied a large panel of human HER2 antibodies to identify the characteristics that make them most suitable for an ADC approach.

View Article and Find Full Text PDF

Tissue factor (TF) is aberrantly expressed in solid cancers and is thought to contribute to disease progression through its procoagulant activity and its capacity to induce intracellular signaling in complex with factor VIIa (FVIIa). To explore the possibility of using tissue factor as a target for an antibody-drug conjugate (ADC), a panel of human tissue factor-specific antibodies (TF HuMab) was generated. Three tissue factor HuMab, that induced efficient inhibition of TF:FVIIa-dependent intracellular signaling, antibody-dependent cell-mediated cytotoxicity, and rapid target internalization, but had minimal impact on tissue factor procoagulant activity in vitro, were conjugated with the cytotoxic agents monomethyl auristatin E (MMAE) or monomethyl auristatin F (MMAF).

View Article and Find Full Text PDF

Currently all approved anti-cancer therapeutic monoclonal antibodies (mAbs) are of the IgG isotype, which rely on Fcgamma receptors (FcγRs) to recruit cellular effector functions. In vitro studies showed that targeting of FcαRI (CD89) by bispecific antibodies (bsAbs) or recombinant IgA resulted in more effective elimination of tumour cells by myeloid effector cells than targeting of FcγR. Here we studied the in vivo anti-tumour activity of IgA EGFR antibodies generated using the variable sequences of the chimeric EGFR antibody cetuximab.

View Article and Find Full Text PDF

Development of human therapeutic Abs has led to reduced immunogenicity and optimal interactions with the human immune system in patients. Humanization had as a consequence that efficacy studies performed in mouse models, which represent a crucial step in preclinical development, are more difficult to interpret because of gaps in our knowledge of the activation of murine effector cells by human IgG (hIgG) remain. We therefore developed full sets of human and mouse isotype variants of human Abs targeting epidermal growth factor receptor and CD20 to explore the crosstalk with mouse FcγRs (mFcγRs) and murine effector cells.

View Article and Find Full Text PDF

This study investigated the effect of CD20-positive B-cell depletion on central nervous system (CNS) white and gray matter pathology in experimental autoimmune encephalomyelitis in common marmosets, a relevant preclinical model of multiple sclerosis. Experimental autoimmune encephalomyelitis was induced in 14 marmosets by immunization with recombinant human myelin oligodendrocyte glycoprotein in complete Freund adjuvant. At 21 days after immunization, B-cell depletion was achieved by weekly intravenous injections of HuMab 7D8, a human-anti-human CD20 antibody that cross-reacts with marmoset CD20.

View Article and Find Full Text PDF

Ab-dependent cellular cytotoxicity (ADCC) is recognized as a prominent cytotoxic mechanism for therapeutic mAbs in vitro. However, the contribution of ADCC to in vivo efficacy, particularly for treatment of solid tumors, is still poorly understood. For zalutumumab, a therapeutic epidermal growth factor receptor (EGFR)-specific mAb currently in clinical development, previous studies have indicated signaling inhibition and ADCC induction as important therapeutic mechanisms of action.

View Article and Find Full Text PDF

CD38, a type II transmembrane glycoprotein highly expressed in hematological malignancies including multiple myeloma (MM), represents a promising target for mAb-based immunotherapy. In this study, we describe the cytotoxic mechanisms of action of daratumumab, a novel, high-affinity, therapeutic human mAb against a unique CD38 epitope. Daratumumab induced potent Ab-dependent cellular cytotoxicity in CD38-expressing lymphoma- and MM-derived cell lines as well as in patient MM cells, both with autologous and allogeneic effector cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on enhancing small-animal SPECT imaging by improving targeted imaging of specific organs and tumors using a 75 pinhole SPECT system, allowing for more efficient photon collection from selected volumes.
  • Researchers utilized an automated stage and integrated webcams to identify and scan desired areas, demonstrating the effectiveness of improved targeting for better image quality.
  • Results showed that targeted scans significantly increased count yield, enhanced visibility of small structures, improved contrast in myocardial imaging, and reduced noise in tumor and heart images, ultimately helping to reduce scan times.
View Article and Find Full Text PDF

Depletion of CD20(+) B cells has been related to reduced clinical activity in relapsing-remitting multiple sclerosis. The underlying mechanism is not understood, because serum IgG levels were unaltered by the treatment. We report the effect of late B cell depletion on cellular and humoral immune mechanisms in a preclinical multiple sclerosis model (i.

View Article and Find Full Text PDF

Ab-dependent cellular cytotoxicity (ADCC) is usually considered an important mechanism of action for immunotherapy with human IgG1 but not IgG2 Abs. The epidermal growth factor receptor (EGF-R) Ab panitumumab represents the only human IgG2 Ab approved for immunotherapy and inhibition of EGF-R signaling has been described as its principal mechanism of action. In this study, we investigated effector mechanisms of panitumumab compared with zalutumumab, an EGF-R Ab of the human IgG1 isotype.

View Article and Find Full Text PDF

Two humanized IgG4 antibodies, natalizumab and gemtuzumab, are approved for human use, and several others, like TGN1412, are or have been in clinical development. Although IgG4 antibodies can dynamically exchange half-molecules, Fab-arm exchange with therapeutic antibodies has not been demonstrated in humans. Here, we show that natalizumab exchanges Fab arms with endogenous human IgG4 in natalizumab-treated individuals.

View Article and Find Full Text PDF

Neutralizing antibodies are thought to be crucial for HIV vaccine protection, but studies in animal models suggest that high antibody concentrations are required. This is a major potential hurdle for vaccine design. However, these studies typically apply a large virus inoculum to ensure infection in control animals in single-challenge experiments.

View Article and Find Full Text PDF

Therapeutic monoclonal antibodies against the epidermal growth factor receptor (EGFR) have advanced the treatment of colon and head and neck cancer, and show great promise for the development of treatments for other solid cancers. Antibodies against EGFR have been shown to act via inhibition of receptor signaling and induction of antibody-dependent cellular cytoxicity. However, complement-dependent cytotoxicity, which is considered one of the most powerful cell killing mechanisms of antibodies, seems inactive for such antibodies.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) activates cellular pathways controlling cell proliferation, differentiation, migration, and survival. It thus represents a valid therapeutic target for treating solid cancers. Here, we used an electron microscopy-based technique (Protein Tomography) to study the structural rearrangement accompanying activation and inhibition of native, individual, EGFR molecules.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) serves as a molecular target for novel cancer therapeutics such as tyrosine kinase inhibitors (TKI) and EGFR Abs. Recently, specific mutations in the EGFR kinase domain of lung cancers were identified, which altered the signaling capacity of the receptor and which correlated with clinical response or resistance to TKI therapy. In the present study, we investigated the impact of such EGFR mutations on antitumor cell activity of EGFR Abs.

View Article and Find Full Text PDF

We evaluated the dose requirements for sustained in vivo activity of ofatumumab, a human anti-CD20 antibody under development for the treatment of B cell-mediated diseases. In a mouse xenograft model, a single dose, resulting in an initial plasma antibody concentration of 5 microg/ml, which was expected to result in full target saturation, effectively inhibited human B-cell tumour development. Tumour growth resumed when plasma concentrations dropped below levels that are expected to result in half-maximal saturation.

View Article and Find Full Text PDF

Antibodies play a central role in immunity by forming an interface with the innate immune system and, typically, mediate proinflammatory activity. We describe a novel posttranslational modification that leads to anti-inflammatory activity of antibodies of immunoglobulin G, isotype 4 (IgG4). IgG4 antibodies are dynamic molecules that exchange Fab arms by swapping a heavy chain and attached light chain (half-molecule) with a heavy-light chain pair from another molecule, which results in bispecific antibodies.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) is overexpressed on many solid tumors and represents an attractive target for antibody therapy. Here, we describe the effect of receptor-mediated antibody internalization on the pharmacokinetics and dose-effect relationship of a therapeutic monoclonal antibody (mAb) against EGFR (2F8). This mAb was previously found therapeutically active in mouse tumor models by two dose-dependent mechanisms of action: blockade of ligand binding and induction of antibody-dependent cell-mediated cytotoxicity.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGF-R) overexpression is common in a large number of solid tumors and represents a negative prognostic indicator. Overexpression of EGF-R is strongly tumor associated, and this tyrosine kinase type receptor is considered an attractive target for Ab therapy. In this study, we describe the evaluation of mAb 2F8, a high avidity human mAb (IgG1kappa) directed against EGF-R, developed using human Ig transgenic mice.

View Article and Find Full Text PDF

Advances in gene transfer approaches are enabling the possibility of applying therapeutic antibodies using DNA. In particular gene transfer in combination with electroporation is promising and can result in generating in vivo antibody concentrations in the low therapeutic range. However, several important problems need to be dealt with before antibody gene transfer can become a valuable supplement to the current therapies.

View Article and Find Full Text PDF

Intravenous Ig preparations (IVIg), originally developed as a substitution therapy for patients with low plasma IgG, are nowadays frequently used in the treatment of various immune diseases. However, the mechanism of action of IVIg in these diseases remains elusive and is often referred to as "immunomodulatory." We hypothesized that monomeric IgG may act as a low-affinity FcgammaR antagonist and sought experimental evidence for this hypothesis.

View Article and Find Full Text PDF