Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase known to promote cell migration and invasiveness. Overexpression and increased activity of FAK are closely associated with metastatic breast tumors and are linked to poor prognosis. This study discovered an inverse correlation between FAK activity and migratory and invasive behavior.
View Article and Find Full Text PDFBiosci Rep
September 2014
Complex interplays among proteins, lipids and carbohydrates can alter the phenotype and are suggested to have a crucial role in tumour metastasis. Our previous studies indicated that a complex of the GSLs (glycosphingolipids), AsGM1 (asialo-GM1), which lacks α2,3-linked sialic acid, and α2β1 integrin receptors is responsible for the metastatic behaviour of C4-2B prostate cancer cells. Herein, we identified and addressed the functional significance of changes in sialylation during prostate cancer progression.
View Article and Find Full Text PDFAnticancer Agents Med Chem
May 2014
1-O-octadecyl-2-O-methylglycero-3-phosphocholine (ET-18-OMe) is an analogue of the naturally occurring 2- lysophosphatidylcholine belonging to the class of alkyllysophospholipids (ALPs). ALPs accumulate in cell membranes and can modulate phospholipid metabolism as well as signal transduction pathways, often inducing apoptosis. This review describes the effect of ET-18- OMe on cancer cell invasion.
View Article and Find Full Text PDF4H-Pyrano-[2,3-b]naphthoquinone is a structural motif commonly found in natural products manifesting anticancer activities. As part of a program aimed at structural simplification of bioactive natural products utilizing multicomponent synthetic processes, we developed a compound library based on this heterocyclic scaffold. We found that several library members displayed low micromolar antiproliferative activity and induced apoptosis in human cancer cells.
View Article and Find Full Text PDFStructural simplification of an antimitotic natural product podophyllotoxin with mimetic heterocyclic scaffolds constructed using multicomponent reactions led to the identification of compounds exhibiting low nanomolar antiproliferative and apoptosis-inducing properties. The most potent compounds were found in the dihydropyridopyrazole, dihydropyridonaphthalene, dihydropyridoindole, and dihydropyridopyrimidine scaffold series. Biochemical mechanistic studies performed with dihydropyridopyrazole compounds showed that these heterocycles inhibit in vitro tubulin polymerization and disrupt the formation of mitotic spindles in dividing cells at low nanomolar concentrations, in a manner similar to podophyllotoxin itself.
View Article and Find Full Text PDFAfter the initial discovery of antiproliferative and apoptosis-inducing properties of a camptothecin-inspired pentacycle based on a 1H-indeno[2',1':5,6]dihydropyrido[2,3-d]pyrimidine scaffold, a library of its analogues as well as their oxidized planar counterparts were prepared utilizing a practical multicomponent synthetic protocol. The synthesized compounds exhibited submicromolar to low micromolar antiproliferative potencies toward a panel of human cancer cell lines. Biochemical experiments are consistent with the dihydropyridine library members undergoing intracellular oxidation to the corresponding planar pyridines, which then inhibit topoisomerase II activity, leading to inhibition of proliferation and cell death.
View Article and Find Full Text PDFA series of ethacrynic acid analogues, lacking the α,β-unsaturated carbonyl unit, was synthesized and subsequently evaluated for their ability to inhibit the migration of human breast cancer cells, Hs578Ts(i)8 as well as of human prostate cancer cells, C4-2B. These cell lines provide a good model system to study migration and invasion, since they represent metastatic cancer. Our studies show that ethacrynic acid analogues with methyl substituents at the aromatic ring demonstrate no inhibitory effect on the migration of both cancer cell lines, whereas a precursor in the synthesis of these ethacrynic acid analogues (II-1, a para-acylated m-cresol) is an excellent inhibitor of the migration of both cancer cell lines.
View Article and Find Full Text PDFThree different extract conditions (aqueous, EtOH and EtOAc) of four different parts (bracts, leaves, roots and stems) of the plant Anemopsis californica (A. californica) were evaluated for their effect on the growth and migration of human colon cancer cells, HCT-8, and the breast cancer cell lines Hs 578T and MCF-7/AZ. Our aim was to identify potential anticancer activity in crude A.
View Article and Find Full Text PDFA series of ethacrynic acid analogues, lacking the alpha,beta-unsaturated carbonyl unit, was synthesized and subsequently evaluated for their ability to inhibit the migration of human breast cancer cells, MCF-7/AZ. Several of the analogues were already active in the low micromolar range, whereas ethacrynic acid itself shows no potential to inhibit the migration of these cancer cells. Preliminary studies show that the presence of one or more methoxy groups at the phenyl ring of ethacrynic acid is important in order for the ethacrynic acid analogues to demonstrate an inhibitory effect on the migration.
View Article and Find Full Text PDFThe most lethal aspect of cancer is the metastatic spread of primary tumors to distant sites. Any mechanism revealed is a target for therapy. In our previous studies, we reported that the invasive activity of the bone metastatic C4-2B prostate cancer cells could be ascribed to the reorganization of the alpha2beta1 integrin receptor and the alpha2 subunit-mediated association and activation of downstream signaling towards the activation of MMPs.
View Article and Find Full Text PDFThe mechanisms of invasion and metastasis are poorly understood. Our previous studies demonstrated that cancer cell invasion may result from reorganization of membrane molecules, thereby initiating signaling pathways. To increase our understanding on how cancer cells govern metastases we studied the established LNCaP prostate cancer progression model.
View Article and Find Full Text PDFTwenty-nine Amaryllidaceae alkaloids and their derivatives belonging to the five most common groups, including lycorine, lycorenine, tazettine, crinine, and narciclasine types, were evaluated for antiproliferative, apoptosis-inducing, and anti-invasive activities in vitro. The antiproliferative properties of each test compound are in agreement with those reported in the literature, while the high potency of amarbellisine is reported for the first time. It was also found that with the exception of ungeremine, amarbellisine, and hippeastrine, the antiproliferative effect of the potent compounds is apoptosis mediated.
View Article and Find Full Text PDFEthnotraditional use of plant-derived natural products plays a significant role in the discovery and development of potential medicinal agents. Plants of the genus Taraxacum, commonly known as dandelions, have a history of use in Chinese, Arabian and Native American traditional medicine, to treat a variety of diseases including cancer. To date, however, very few studies have been reported on the anti-carcinogenic activity of Taraxacum officinale (TO).
View Article and Find Full Text PDFPyrano[3,2- c]pyridone and pyrano[3,2- c]quinolone structural motifs are commonly found in alkaloids manifesting diverse biological activities. As part of a program aimed at structural simplification of bioactive natural products utilizing multicomponent synthetic processes, we developed compound libraries based on these privileged heterocyclic scaffolds. The selected library members display low nanomolar antiproliferative activity and induce apoptosis in human cancer cell lines.
View Article and Find Full Text PDFDiversely substituted 2-pyrrolines have been prepared by a novel multicomponent process involving a reaction of various N-(aryl- and alkylsulfonamido)-acetophenones with aldehydes and malononitrile. While the reaction is highly regioselective, it is not stereoselective, generating a mixture of cis and trans 2-pyrrolines. A number of analogs from both cis and trans 2-pyrroline libraries were found to have antiproliferative activity in human cancer cell lines.
View Article and Find Full Text PDFThe ether lipid 1-O-octadecyl-2-O-methyl-3-glycero-phosphocholine (ET-18-OMe) inhibits cell-cell adhesion and induces invasiveness of breast cancer cells. Previously, we showed that a loss of cell-cell adhesion was due to sterical hindrance of E-cadherin by the anti-adhesive properties of the cell surface mucin episialin. Here, we demonstrated that the ether lipid ET-18-OMe induced the translocation of E-cadherin and episialin to membrane microdomains, enriched in glycosphingolipids, known to be involved in cell-cell adhesion and cell signaling.
View Article and Find Full Text PDFA multicomponent reaction of indane-1,3-dione, an aldehyde and an amine-containing aromatic compound leading to the formation of indenopyridine-based heterocyclic medicinal scaffolds has been investigated. It was found that the yields significantly improve when oxygen gas is bubbled through the reaction mixture, facilitating the oxidation of the intermediate dihydropyridine-containing compounds to their aromatic counterparts. Investigation of the reaction scope revealed that formaldehyde, as well as various aliphatic, aromatic and heteroaromatic aldehydes, works well as the aldehyde component.
View Article and Find Full Text PDFIncreased src tyrosine kinase expression and activity has been associated with colon cancer cell invasion and survival. Several signaling pathways are involved in the oncogenic activation of src during the adenoma to carcinoma progression and cellular invasion. In the present study, the synthetic ether lipid analog ET-18-OMe was shown to promote invasion of HCT-8/S11 colon cancer cells into collagen type I through the concomitant activation of src by phosphorylation at Tyr416 (5-30 min) in alpha1-integrin immunoprecipitates containing the integrin binding proteins talin and paxillin, as well as the phoshorylated and activated forms of focal adhesion kinase (FAK) at Tyr397 (a FAK kinase activation signal), Tyr576 and Tyr861.
View Article and Find Full Text PDFPodophyllotoxin has been extensively used as a lead agent in the development of new anticancer drugs. On the basis of the previously reported simplified 4-aza-2,3-didehydro podophyllotoxin analogues, we implemented a bioisosteric replacement of the methylenedioxybenzene subunit with a pyrazole moiety to afford tetracyclic dihydropyridopyrazoles. Libraries of these structurally simple analogues are prepared by a straightforward one-step multicomponent synthesis and demonstrated to display antiproliferative properties in a number of human cancer cell lines.
View Article and Find Full Text PDFPlants used in folklore medicine continue to be an important source of discovery and development of novel therapeutic agents. In the present study, we determined the effects of crude aqueous extracts of a panel of medicinal plants on the growth and invasion of cancer cells. Our results showed that extracts of L.
View Article and Find Full Text PDFA three-component condensation of 5-amino-3-methylpyrazole, tetronic acid, and various aromatic, heteroaromatic, and aliphatic aldehydes leads to the formation of dihydropyridopyrazole analogues of a cytotoxic lignan podophyllotoxin. This new heterocyclic scaffold-based library allows a drastic reduction of the structural complexity of the natural product with the retention of its potent cytotoxic properties. Similarly to podophyllotoxin, the presented analogues induce apoptosis in Jurkat cells.
View Article and Find Full Text PDFInvasion is a complex process controlled by secretion and activation of proteases, alteration of integrin levels and GSL (glycosphingolipid) patterns. Differential organization of GSLs with specific membrane proteins and signal transducers in GEMs (GSL-enriched microdomains), initiates signalling events to modify cellular phenotype. Although the GSL monosialyl-Gb5 has been linked with invasion, its functional role in invasion is poorly described and understood.
View Article and Find Full Text PDFNative American medicinal plants are traditionally used to prevent and treat a variety of diseases, including cancer. These herbal preparations are alleged to have many biological activities, such as stimulation or suppression of immune responses and antiproliferative effects on cancer cells. In the present study, we investigated the effects of aqueous and ethanol extracts from two Native American plants, Ligusticum porteri (Osha) and Anemopsis californica (Yerba Manza), on the growth of human MCF-7/AZ breast and HCT8/E11 colon cancer cells.
View Article and Find Full Text PDFGM3 ganglioside inhibits tetraspanin CD9-facilitated cell motility in various cell lines (Ono, M., Handa, K., Sonnino, S.
View Article and Find Full Text PDF