Skeletal muscle is a heterogenous tissue comprised primarily of myofibers, commonly classified into three fiber types in humans: one "slow" (type 1) and two "fast" (type 2A and type 2X). However, heterogeneity between and within traditional fiber types remains underexplored. We applied transcriptomic and proteomic workflows to 1050 and 1038 single myofibers from human vastus lateralis, respectively.
View Article and Find Full Text PDFPlasticity of skeletal muscle is induced by transcriptional and translational events in response to exercise, leading to multiple health and performance benefits. The skeletal muscle microenvironment harbors myofibers and mononuclear cells, but the rich cell diversity has been largely ignored in relation to exercise adaptations. Using our workflow of transcriptome profiling of individual myofibers, we observed that their exercise-induced transcriptional response was surprisingly modest compared with the bulk muscle tissue response.
View Article and Find Full Text PDFInt J Sports Physiol Perform
January 2025
Purpose: Identifying the determinants of performance is fundamental to talent identification and individualizing training prescription. Consequently, the aim of this study was to determine whether estimated muscle typology is associated with the key mechanical characteristics of track sprint cycling.
Methods: Sixteen world-class and elite track cyclists (n = 7 female) completed a laboratory session wherein torque-cadence and power-cadence profiles were constructed to determine maximal power output (Pmax), optimal cadence (Fopt), and maximal cadence (Fmax), and fatigue rate per pedal stroke was determined during a 15-second maximal sprint at Fopt.
Running economy is an important determinant of endurance running performance, yet insights into characteristics contributing to its inter-individual variability remain limited. Although slow-twitch muscle fibers are more energy-efficient than fast-twitch fibers during the (near-)isometric contractions common during submaximal running, current literature lacks a consensus on whether a relationship between muscle fiber-type distribution and running economy exists. This study aims to resolve the ongoing debate by addressing potential confounding factors often overlooked in prior research, such as the effect of different running speeds, the homogeneity of investigated groups, and the potential impact of the adopted running gait.
View Article and Find Full Text PDFHuman skeletal muscle fiber type composition varies greatly along the muscle, so one biopsy may not accurately represent the whole muscle. Recommendations on the number of biopsies and fiber counts using immunohistochemistry and whether these findings can be extrapolated to other muscles are lacking. We assessed fiber type composition in the vastus lateralis and gastrocnemius medialis muscles of 40 individuals.
View Article and Find Full Text PDFDiabetic nephropathy (DN) is a major cause of global kidney failure. While histological kidney biopsy is the gold standard for diagnosis, it primarily reveals tissue morphology. In contrast, near-infrared (NIR) microscopy offers a label-free method for detailed molecular characterization of kidney tissue.
View Article and Find Full Text PDFThe heterogeneous fiber type composition of skeletal muscle makes it challenging to decipher the molecular signaling events driving the health- and performance benefits of exercise. We developed an optimized workflow for transcriptional profiling of individual human muscle fibers before, immediately after, and after 3 h of recovery from high-intensity interval cycling exercise. From a transcriptional point-of-view, we observe that there is no dichotomy in fiber activation, which could refer to a fiber being recruited or nonrecruited.
View Article and Find Full Text PDFPurpose: To gather information on practices and perceptions of high-performance experts regarding their athletes' muscle fiber-type composition (MFTC) and its estimation.
Methods: A questionnaire on the noninvasive versus invasive estimation of MFTC was completed by 446 experts including coaches and sport-science/sports-medicine staff. Moreover, the perceived importance of MFTC for training and performance optimization was assessed.
Purpose: Apnea duration is dependent on three factors: oxygen storage, oxygen consumption, hypoxia and hypercapnia tolerance. While current literature focuses on maximal apneas to improve apnea duration, apnea trained individuals use timed-repeated submaximal apneas, called "O and CO tables". These tables claim to accommodate the body to cope with hypoxia and hypercapnia, respectively.
View Article and Find Full Text PDFThe wide variation in muscle fibre type distribution across individuals, along with the very different energy consumption rates in slow versus fast muscle fibres, suggests that muscle fibre typology contributes to inter-individual differences in metabolic rate during exercise. However, this has been hard to demonstrate due to the gap between a single muscle fibre and full-body exercises. We investigated the isolated effect of triceps surae muscle contraction velocity on whole-body metabolic rate during cyclic contractions in individuals a priori selected for their predominantly slow (n = 11) or fast (n = 10) muscle fibre typology by means of proton magnetic resonance spectroscopy (H-MRS).
View Article and Find Full Text PDFCarnosine, an MR-visible dipeptide in human muscle, is well characterized by two peaks at ~8 and ~7 ppm from C2 and C4 imidazole protons. Like creatine and other metabolites, carnosine is subject to residual dipolar coupling in the anisotropic environment of muscle fibers, but the effects have not been studied extensively. Single-voxel TE 30-32 PRESS spectra from three different 3T studies were acquired from gastrocnemius medialis and soleus muscles in the human lower leg.
View Article and Find Full Text PDFInt J Sports Physiol Perform
December 2023
Purpose: To examine the association between muscle fiber typology and match running performance in professional Australian football (AF) athletes.
Methods: An observational time-motion analysis was performed on 23 professional AF athletes during 224 games throughout the 2020 competitive season. Athletes were categorized by position as hybrid, small, or tall.
Muscle typology is heterogeneous among national level football (soccer) players, but positional differences remain unclear. Furthermore, fast typology (FT) individuals fatigue more than slow typology (ST) individuals in lab conditions. Therefore, we investigated if muscle typology is different between playing positions and if the decay in high-intensity activities from the first to the second half is larger in FT football players than in ST players.
View Article and Find Full Text PDFMultiple sclerosis (MS) pathology features autoimmune-driven neuroinflammation, demyelination, and failed remyelination. Carnosine is a histidine-containing dipeptide (HCD) with pluripotent homeostatic properties that is able to improve outcomes in an animal MS model (EAE) when supplied exogenously. To uncover if endogenous carnosine is involved in, and protects against, MS-related neuroinflammation, demyelination or remyelination failure, we here studied the HCD-synthesizing enzyme carnosine synthase (CARNS1) in human MS lesions and two preclinical mouse MS models (EAE, cuprizone).
View Article and Find Full Text PDFAim: Histidine-containing dipeptides (HCDs) are pleiotropic homeostatic molecules with potent antioxidative and carbonyl quenching properties linked to various inflammatory, metabolic, and neurological diseases, as well as exercise performance. However, the distribution and metabolism of HCDs across tissues and species are still unclear.
Methods: Using a sensitive UHPLC-MS/MS approach and an optimized quantification method, we performed a systematic and extensive profiling of HCDs in the mouse, rat, and human body (in n = 26, n = 25, and n = 19 tissues, respectively).
This study examined whether muscle typology (muscle fibre type composition) is related to maximal strength and whether it can explain the high inter-individual variability in number of repetitions to failure during resistance training. Ninety-five resistance training novices (57 males) were assessed for their maximal isometric knee extension strength and muscle typology. Muscle typology was estimated by measuring carnosine in the soleus, gastrocnemius and/or vastus lateralis using proton magnetic resonance spectroscopy.
View Article and Find Full Text PDFBalenine possesses some of carnosine's and anserine's functions, yet it appears more resistant to the hydrolysing CN1 enzyme. The aim of this study was to elucidate the stability of balenine in the systemic circulation and its bioavailability in humans following acute supplementation. Two experiments were conducted in which (in vitro) carnosine, anserine and balenine were added to plasma to compare degradation profiles and (in vivo) three increasing doses (1-4-10 mg/kg) of balenine were acutely administered to 6 human volunteers.
View Article and Find Full Text PDFConsiderable inter-individual heterogeneity exists in the muscular adaptations to resistance training. It has been proposed that fast-twitch fibres are more sensitive to hypertrophic stimuli and thus that variation in muscle fibre type composition is a contributing factor to the magnitude of training response. This study investigated if the inter-individual variability in resistance training adaptations is determined by muscle typology and if the most appropriate weekly training frequency depends on muscle typology.
View Article and Find Full Text PDFCarnosine (β-alanyl-L-histidine) and its methylated analogues anserine and balenine are highly concentrated endogenous dipeptides in mammalian skeletal muscle that are implicated in exercise performance. Balenine has a much better bioavailability and stability in human circulation upon acute ingestion, compared to carnosine and anserine. Therefore, ergogenic effects observed with acute carnosine and anserine supplementation may be even more pronounced with balenine.
View Article and Find Full Text PDFExercise profoundly influences glycemic control by enhancing muscle insulin sensitivity, thus promoting glucometabolic health. While prior glycogen breakdown so far has been deemed integral for muscle insulin sensitivity to be potentiated by exercise, the mechanisms underlying this phenomenon remain enigmatic. We have combined original data from 13 of our studies that investigated insulin action in skeletal muscle either under rested conditions or following a bout of one-legged knee extensor exercise in healthy young male individuals (n = 106).
View Article and Find Full Text PDFBackground: Beta-alanine (BA) supplementation increases muscle carnosine, an abundant endogenous antioxidant and pH buffer in skeletal muscle. Carnosine loading promotes exercise capacity in healthy older adults. As patients with chronic obstructive pulmonary disease (COPD) suffer from elevated exercise-induced muscle oxidative/carbonyl stress and acidosis, and from reduced muscle carnosine stores, it was investigated whether BA supplementation augments muscle carnosine and induces beneficial changes in exercise capacity, quadriceps function, and muscle oxidative/carbonyl stress in patients with COPD.
View Article and Find Full Text PDF