This study examined relations of primary school children's perceived physical competence and sports participation (frequency and type) with social acceptance in the regular classroom and physical education (PE) and whether these relations differed depending on the type of sport children participated in (team vs. individual sports). In total, 182 children (48.
View Article and Find Full Text PDFPlay in nature-based environments in childhood education has positive benefits for child development. Although previous reviews showed the benefits of play in nature-based environments for child development they did not attempt to understand how and why nature-based environments contribute to play quality. This review aims to explore the value of play in nature-based environments compared to non-nature-based environments for developmental outcomes of young children (2-8 year).
View Article and Find Full Text PDFBackground: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective vaccination against COVID-19 is therefore of great importance in this group, but little is known about the immunogenicity of COVID-19 vaccines in these patients.
Objectives: We sought to study humoral and cellular immune responses after mRNA-1273 COVID-19 vaccination in adult patients with IEI.
A retrospective of an academic career. The article poses the question about the values involved in a life in the academy, starting with the role of hemoglobin in the chick embryo and ending with the role of calcium in the sea urchin spine.
View Article and Find Full Text PDFThe sea urchin larval embryo elaborates two calcitic endoskeletal elements called spicules. Spicules are synthesized by the primary mesenchyme cells (PMCs) and begin to form at early gastrula stage. It is known that the calcium comprising the spicules comes from the seawater and we wish to further consider the mode of calcium transport from the extracellular seawater to the PMCs and then onto the forming spicules.
View Article and Find Full Text PDFWe describe modern molecular biology methods currently used in the study of biomineralization. We focus our descriptions on two areas of biomineralization research in which these methods have been particularly powerful. The first area is the use of modern molecular methods to identify and characterize the so-called occluded matrix proteins present in mineralized tissues.
View Article and Find Full Text PDFA central issue in better understanding the process of biomineralization is to elucidate the function of occluded matrix proteins present in mineralized tissues. A potent approach to addressing this issue utilizes specific inhibitors of expression of known genes. Application of antisense oligonucleotides that specifically suppress translation of a given mRNA are capable of causing aberrant biomineralization, thereby revealing, at least in part, a likely function of the protein and gene under investigation.
View Article and Find Full Text PDFCrystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC · H(2)O) → dehydrated amorphous calcium carbonate (ACC) → calcite.
View Article and Find Full Text PDFProg Mol Subcell Biol
April 2016
Echinoderms possess a rigid endoskeleton composed of calcite and small amounts of occluded organic matrix proteins. The test (i.e.
View Article and Find Full Text PDFBackground: The sea urchin embryo has been an important model organism in developmental biology for more than a century. This is due to its relatively simple construction, translucent appearance, and the possibility to follow the fate of individual cells as development to the pluteus larva proceeds. Because the larvae contain tiny calcitic skeletal elements, the spicules, they are also important model organisms for biomineralization research.
View Article and Find Full Text PDFThe SpSM30 gene family of the sea urchin, Strongylocentrotus purpuratus, is comprised of six members, designated SpSM30A through SpSM30F (Livingston et al., 2006). The SpSM30 proteins are found uniquely in embryonic and adult mineralized tissues of the sea urchin.
View Article and Find Full Text PDFSea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO(3)) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2008
Sea urchin larval spicules transform amorphous calcium carbonate (ACC) into calcite single crystals. The mechanism of transformation is enigmatic: the transforming spicule displays both amorphous and crystalline properties, with no defined crystallization front. Here, we use X-ray photoelectron emission spectromicroscopy with probing size of 40-200 nm.
View Article and Find Full Text PDFSkeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule.
View Article and Find Full Text PDFIt is widely known that macromolecules, such as proteins, can control the nucleation and growth of inorganic solids in biomineralizing organisms. However, what is not known are the complementary molecular interactions, organization, and rearrangements that occur when proteins interact with inorganic solids during the formation of biominerals. The organic-mineral interface (OMI) is expected to be the site for these phenomena, and is therefore extraordinarily interesting to investigate.
View Article and Find Full Text PDFWe report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome.
View Article and Find Full Text PDFThe sea urchin egg has a rich history of contributions to our understanding of fundamental questions of egg activation at fertilization. Within seconds of sperm-egg interaction, calcium is released from the egg endoplasmic reticulum, launching the zygote into the mitotic cell cycle and the developmental program. The sequence of the Strongylocentrotus purpuratus genome offers unique opportunities to apply functional genomic and proteomic approaches to investigate the repertoire and regulation of Ca(2+) signaling and homeostasis modules present in the egg and zygote.
View Article and Find Full Text PDFBiomineralization, the biologically controlled formation of mineral deposits, is of widespread importance in biology, medicine, and engineering. Mineralized structures are found in most metazoan phyla and often have supportive, protective, or feeding functions. Among deuterostomes, only echinoderms and vertebrates produce extensive biomineralized structures.
View Article and Find Full Text PDFBiomineralization is the process by which metazoa form hard minerals for support, defense, and feeding. The minerals so formed, e.g.
View Article and Find Full Text PDFThe sea urchin embryo forms calcareous endoskeletal spicules composed of calcite and an occluded protein matrix. Though the latter is approximately 0.1% of of the mass, the composite has substantially altered material properties, e.
View Article and Find Full Text PDF