Best Pract Res Clin Anaesthesiol
June 2015
Cardiopulmonary bypass (CBP) and extracorporeal membrane oxygenation (ECMO) are two modalities of mechanical circulatory support. They provide hemodynamic stability for patients undergoing invasive cardiothoracic interventions, and they can be lifesaving in emergencies resulting from cardiogenic shock or respiratory failure. Unlike implantable ventricular assist devices, CPB and ECMO are short-term solutions meant to last from hours to days, and the patient will need to be weaned from the mechanical support once the intervention has completed or when the underlying condition has improved.
View Article and Find Full Text PDFExcitation-contraction coupling, the process that regulates contractions by skeletal muscles, transduces changes in membrane voltage by activating release of Ca(2+) from internal stores to initiate muscle contraction. Defects in excitation-contraction coupling are associated with muscle diseases. Here we identify Stac3 as a novel component of the excitation-contraction coupling machinery.
View Article and Find Full Text PDFIn many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis.
View Article and Find Full Text PDFMutations in the gene encoding TRPM7 (trpm7), a member of the Transient Receptor Potential (TRP) superfamily of cation channels that possesses an enzymatically active kinase at its C terminus, cause the touch-unresponsive zebrafish mutant touchdown. We identified and characterized a new allele of touchdown, as well as two previously reported alleles, and found that all three alleles harbor mutations that abolish channel activity. Through the selective restoration of TRPM7 expression in sensory neurons, we found that TRPM7's kinase activity and selectivity for divalent cations over monovalent cations were dispensable for touch-evoked activation of escape behaviors in zebrafish.
View Article and Find Full Text PDFThe process by which light touch in vertebrates is transformed into an electrical response in cutaneous mechanosensitive neurons is a largely unresolved question. To address this question we undertook a forward genetic screen in zebrafish (Danio rerio) to identify mutants exhibiting abnormal touch-evoked behaviors, despite the presence of sensory neurons and peripheral neurites. One family, subsequently named touché, was found to harbor a recessive mutation which produced offspring that were unresponsive to light touch, but responded to a variety of other sensory stimuli.
View Article and Find Full Text PDFA screen for zebrafish motor mutants identified two noncomplementing alleles of a recessive mutation that were named non-active (nav(mi89) and nav(mi130)). nav embryos displayed diminished spontaneous and touch-evoked escape behaviors during the first 3 days of development. Genetic mapping identified the gene encoding Na(V)1.
View Article and Find Full Text PDFThe zebrafish ennui mutation was identified from a mutagenesis screen for defects in early behavior. Homozygous ennui embryos swam more slowly than wild-type siblings but normal swimming recovered during larval stages and homozygous mutants survived until adulthood. Electrophysiological recordings from motoneurons and muscles suggested that the motor output of the CNS following mechanosensory stimulation was normal in ennui, but the synaptic currents at the neuromuscular junction were significantly reduced.
View Article and Find Full Text PDFWild-type zebrafish embryos swim away in response to tactile stimulation. By contrast, relatively relaxed mutants swim slowly due to weak contractions of trunk muscles. Electrophysiological recordings from muscle showed that output from the CNS was normal in mutants, suggesting a defect in the muscle.
View Article and Find Full Text PDFContractions by skeletal muscle require proper excitation-contraction (EC) coupling, whereby depolarization of the muscle membrane leads to an increase in cytosolic Ca(2+) and contraction. Changes in membrane voltage are detected by dihydropyridine receptors (DHPR) that directly interact with and activate ryanodine receptors to release Ca(2+) from the sarcoplasmic reticulum into the cytosol. A genetic screen for motility mutations isolated a new allele of the immotile zebrafish mutant relaxed.
View Article and Find Full Text PDFshocked (sho) is a zebrafish mutation that causes motor deficits attributable to CNS defects during the first2dof development. Mutant embryos display reduced spontaneous coiling of the trunk, diminished escape responses when touched, and an absence of swimming. A missense mutation in the slc6a9 gene that encodes a glycine transporter (GlyT1) was identified as the cause of the sho phenotype.
View Article and Find Full Text PDFBilateral alternation of muscle contractions requires reciprocal inhibition between the two sides of the hindbrain and spinal cord, and disruption of this inhibition should lead to simultaneous activation of bilateral muscles. At 1 day after fertilization, wild-type zebrafish respond to mechanosensory stimulation with multiple fast alternating trunk contractions, whereas bandoneon (beo) mutants contract trunk muscles on both sides simultaneously. Similar simultaneous contractions are observed in wild-type embryos treated with strychnine, a blocker of the inhibitory glycine receptor (GlyR).
View Article and Find Full Text PDFThe analysis of behavioral mutations in zebrafish can be a powerful strategy for identifying genes that regulate the function and development of neural circuits in the vertebrate CNS. A neurophysiological analysis of the shocked (sho) mutation that affects the initiation of swimming after mechanosensory stimulation was undertaken to identify the function of the sho gene product in the developing motor circuitry. The cutaneous Rohon-Beard (RB) mechanosensory neurons responded normally to stimulation, and muscle fibers were unaffected in sho embryos, suggesting that the output of the CNS is abnormal.
View Article and Find Full Text PDF