Developmental anomalies are an important cause of stillbirth and early perinatal death in companion animals. Many of these disorders remain poorly understood and provide an opportunity as a spontaneous animal model for human disease. Pentalogy of Cantrell is a rare congenital syndrome described in human neonates.
View Article and Find Full Text PDFCase Summary: A 3-year-old entire female Burmese cat was presented for investigation of intermittent lethargy during gestation followed by persistent hypersalivation and ataxia postpartum. The cat had queened three litters in total, with clinical signs worsening during the most recent lactation period. Mild anaemia (26%), hypoglycaemia (2.
View Article and Find Full Text PDF1,3-Disiloxanediols are effective hydrogen-bonding catalysts that exhibit enhanced activity relative to silanediols and triarylsilanols. The catalytic activity for a series of 1,3-disiloxanediols, including naphthyl-substituted and unsymmetrical siloxanes, has been quantified and compared relative to other silanol and thiourea catalysts using the Friedel Crafts addition of indole to trans-β-nitrostyrene. An in-depth kinetic study using reaction progress kinetic analysis (RPKA) has been performed to probe the catalyst behavior of 1,3-disiloxanediols.
View Article and Find Full Text PDFA series of new 1,3-disiloxanediols has been synthesized, including naphthyl-substituted and unsymmetrical siloxanes, and demonstrated as a new class of anion-binding catalysts. In the absence of anions, diffusion-ordered spectroscopy (DOSY) displays self-association of 1,3-disiloxanediols through hydrogen-bonding interactions. Binding constants determined for 1,3-disiloxanediol catalysts indicate strong hydrogen-bonding and anion-binding abilities with unsymmetrical siloxanes displaying different hydrogen-bonding abilities for each silanol group.
View Article and Find Full Text PDFChem Commun (Camb)
April 2014
X-ray crystallography showcases the distinct self-association and hydrogen-bonding patterns of organic silanediols, R2Si(OH)2, with bifunctional heterocycles for supramolecular assembly. Diffusion-ordered spectroscopy (DOSY) studies identify the dominant hydrogen-bonding patterns and structures in solution, which correlate with solid-state patterns at high concentrations.
View Article and Find Full Text PDFWe report the Lewis acid catalyzed additions of allylsilanes to N-Boc-iminooxindoles and the formation of novel silicon-containing spirocarbamates via intramolecular trapping of a β-silyl carbocation by an N-Boc group. Several transformations display the synthetic utility of these spirocarbamate oxindoles, including a reductive cyclization to access new silylated furoindoline derivatives.
View Article and Find Full Text PDFThe incorporation of silicon and synthesis of organosilicon small molecules provide unique opportunities for medicinal applications. The biological investigation of organosilicon small molecules is particularly interesting because of differences in their chemical properties that can contribute to enhanced potency and improved pharmacological attributes. Applications such as inhibitor design, imaging, drug release technology, and mapping inhibitor binding are discussed.
View Article and Find Full Text PDFThe importance of cooperative hydrogen-bonding effects and SiOH-acidification is described for silanediol catalysis. NMR binding, X-ray, and computational studies provide support for a unique dimer resulting from silanediol self-recognition. The significance of this cooperative hydrogen-bonding is demonstrated using novel fluorinated silanediol catalysts for the addition of indoles and N,N-dimethyl-m-anisidine to trans-β-nitrostyrene.
View Article and Find Full Text PDF