Additive manufacturing is a technique that allows the construction of prototypes and has evolved a lot in the last 20 years, innovating industrial fabrication processes in several areas. In chemistry, additive manufacturing has been used in several functionalities, such as microfluidic analytical devices, energy storage devices, and electrochemical sensors. Theophylline and paracetamol are important pharmaceutical drugs where overdosing can cause adverse effects, such as tachycardia, seizures, and even renal failure.
View Article and Find Full Text PDFSilver materials are known to present excellent properties, such as high electrical and thermal conductivity as well as chemical stability. Silver-based inks have drawn a lot of attention for being compatible with various substrates, which can be used in the production uniform and stable pseudo-reference electrodes with low curing temperatures. Furthermore, the interest in the use of disposable electrodes has been increasing due to the low cost and the possibility of their use in point-of-care and point-of-need situations.
View Article and Find Full Text PDFThis work presents a novel procedure involving the sequential chemical treatment to generate reduced graphene oxide (rGO) within 3D-printed polylactic acid (PLA) electrodes and their potential applications for sensing and biosensing. A new configuration of a compact all-3D-printed electrochemical device containing the three electrodes is presented, in which the working electrode was treated to generate rGO within PLA (rGO-PLA) after treatment within NaBH. The rGO-PLA electrodes presented a notable current increase for the redox probe ferrocene-methanol in comparison with the same surface treated by dimethylformamide immersion.
View Article and Find Full Text PDF