Glioblastoma (GB), a prevalent and highly malignant primary brain tumour with a very high mortality rate due to its resistance to conventional therapies and invasive nature, resulting in 5-year survival rates of only 4-17%. Despite recent advancements in cancer management, the survival rates for GB patients have not significantly improved over the last 10-20 years. Consequently, there exists a critical unmet need for innovative therapies.
View Article and Find Full Text PDFThe well-known clinical benefits of proton therapy are achieved through higher target-conformality and normal tissue sparing than conventional radiotherapy. However, there is an increased sensitivity to uncertainties in patient motion/setup, proton range and radiobiological effect. Although recent efforts have mitigated some uncertainties, radiobiological effect remains unresolved due to a lack of clinical data for relevant endpoints.
View Article and Find Full Text PDFObjective: Radiobiological modelling the risks of second primary cancer (SPC) after proton therapy (PT) for childhood cranial cancer remains largely unknown. Organ-specific dose-response risk factors such as radiosensitivity require exploration. This study compared the influence of radiosensitivity data (slope of β) on children's lifetime attributable risks (LAR) of SPC development in out-of-field organs following cranial scattering and scanning PT.
View Article and Find Full Text PDFBackground And Purpose: Proton therapy (PT) can reduce side effects for paediatric cranial malignancies. Despite the high number of paediatric patients treated with PT, radiation induced risk factors for second primary cancer (SPC) in out-of-field organs are unknown. This study estimated lifetime attributable risk (LAR) of SPC as a function of age and sex for out-of-field organs following passive scattering and scanning beam PT in paediatric brain tumours.
View Article and Find Full Text PDFPurpose: Proton therapy (PT) is broadly accepted as the gold standard of care for pediatric patients with cranial cancer. The superior dose distribution of PT compared to photon radiotherapy reduces normal tissue complication probability (NTCP) for organs at risk. As NTCPs for pediatric organs are not well understood, clinics generally base radiation response on adult data.
View Article and Find Full Text PDFBackground: Proton radiotherapy (PT) is used increasingly for paediatric brain cancer patients. However, as demonstrated here, the knowledge on normal tissue dose constraints, to minimize side-effects, for this cohort is limited.
Methods: A search strategy was systematically conducted on MEDLINE® database.
FLASH radiotherapy, or the administration of ultra-high dose rate radiotherapy, is a new radiation delivery method that aims to widen the therapeutic window in radiotherapy. Thus far, most in vitro and in vivo results show a real potential of FLASH to offer superior normal tissue sparing compared to conventionally delivered radiation. While there are several postulations behind the differential behaviour among normal and cancer cells under FLASH, the full spectra of radiobiological mechanisms are yet to be clarified.
View Article and Find Full Text PDFBackground: Proton radiotherapy produces superior dose distributions compared to photon radiotherapy, reducing side effects. Differences between the two modalities are not fully quantified in paediatric patients for various intracranial tumour sites or age. Understanding these differences may help clinicians estimate the benefit and improve referral across available centres.
View Article and Find Full Text PDFIntroduction: Despite improvements in radiation therapy, chemotherapy and surgical procedures over the last 30 years, pancreatic cancer 5-year survival rate remains at 9%. Reduced stroma permeability and heterogeneous blood supply to the tumour prevent chemoradiation from making a meaningful impact on overall survival. Hypoxia-activated prodrugs are the latest strategy to reintroduce oxygenation to radioresistant cells harbouring in pancreatic cancer.
View Article and Find Full Text PDFHead and neck cancers (HNCs) are aggressive epithelial tumours frequently treated using radiation. HNC biology shows distinctions dependent on the oncologic involvement of the human papilloma virus (HPV). Clinically, HPV positive HNCs respond better to radiotherapy but few in vitro data demonstrate radiobiological differences explaining differences in clinical outcomes.
View Article and Find Full Text PDFIntroduction: Some head and neck squamous cell carcinomas (HNSCC) have a distinct aetiology, which depends on the presence of oncogenic human papilloma virus (HPV). Also, HNSCC contains cancer stem cells (CSCs) that have greater radioresistance and capacity to change replication dynamics in response to irradiation compared to non-clonogenic cells. Since there is limited data on CSCs in HNSCC as a function of HPV status, better understanding of their radiobiology may enable improved treatment outcome.
View Article and Find Full Text PDFEvidence of cancer cells that bear attributes analogous to those of normal stem cells has developed a hierarchical model of cancer's architecture and progression. This subset of cancer stem cells (CSCs) drives the progression and therapy resistance of cancers. Research to identify the phenotypes of these CSCs presents evidence of a subpopulation that is more resistant to therapy and may proliferate in response.
View Article and Find Full Text PDFThe use of charged-particle radiation therapy (CPRT) is an increasingly important development in the treatment of cancer. One of the most pressing controversies about the use of this technology is whether randomised controlled trials are required before this form of treatment can be considered to be the treatment of choice for a wide range of indications. Equipoise is the key ethical concept in determining which research studies are justified.
View Article and Find Full Text PDF