Publications by authors named "Wilson Chick"

The visualization of chemical processes that occur in the solid-state is key to the design of new functional materials. One of the challenges in these studies is to monitor the processes across a range of timescales in real-time. Here, we present a pump-multiprobe single-crystal X-ray diffraction (SCXRD) technique for studying photoexcited solid-state species with millisecond-to-minute lifetimes.

View Article and Find Full Text PDF

Salbutamol is an active pharmaceutical ingredient commonly used to treat respiratory distress and is listed by the World Health Organization as an essential medicine. Here, we establish the crystal structure of its oxalate form, salbutamol oxalate, and explore the nature of its crystallographic disorder by combined X-ray crystallography and C cross-polarization (CP) magic-angle spinning (MAS) solid-state NMR. The *C-OH chiral center of salbutamol (note that the crystal structures are a racemic mixture of the two enantiomers of salbutamol) is disordered over two positions, and the -butyl group is rotating rapidly, as revealed by C solid-state NMR.

View Article and Find Full Text PDF

Understanding the transitions between polymorphs is essential in the development of strategies for manufacturing and maximizing the efficiency of pharmaceuticals. However, this can be extremely challenging: crystallization can be influenced by subtle changes in environment, such as temperature and mixing intensity or even imperfections in the crystallizer walls. Here, we highlight the importance of in situ measurements in understanding crystallization mechanisms, where a segmented flow crystallizer was used to study the crystallization of the pharmaceuticals urea: barbituric acid (UBA) and carbamazepine (CBZ).

View Article and Find Full Text PDF

An analysis of the important intermolecular interactions of the active pharmaceutical ingredient lovastatin which contribute to the surface chemistry and attachment energy morphology is presented. The analysis is supported by a recent redetermination of the single-crystal structure (orthorhombic space group P222) and targets the understanding and potential control of the morphology of lovastatin, which tends to crystallize in a needle-like morphology, where the aspect ratio varies depending on the nature of the solvent. The lattice energy was calculated to be -38.

View Article and Find Full Text PDF

Crystal size and shape can be manipulated to enhance the qualities of the final product. In this work the steady-state shape and size of succinic acid crystals, with and without a polymeric additive (Pluronic P123) at 350 mL, scale is reported. The effect of the amplitude of cycles as well as the heating/cooling rates is described, and convergent cycling (direct nucleation control) is compared to static cycling.

View Article and Find Full Text PDF

The design of ligands that mediate through-bond long range super-exchange in metal-organic hybrid materials would expand chemical space beyond the commonly observed short range, low temperature magnetic ordering. Here we examine acetylene dicarboxylate as a potential ligand that could install long range magnetic ordering due to its spatially continuous frontier orbitals. Using a known Mn(ii)-containing coordination polymer we compute and measure the electronic structure and magnetic ordering.

View Article and Find Full Text PDF

A transferable, simple, method for producing previously elusive and novel polymorphic forms of important active pharmaceutical ingredients (APIs; paracetamol (acetaminophen), piroxicam and piracetam) is demonstrated. Nitrogen heterocyclic co-molecules are employed to influence the self-assembly crystallisation process in a multi-component environment. Previously unknown solvates have also been synthesised by this method.

View Article and Find Full Text PDF

A vapor-induced cyclization has been observed in the host environment of a crystalline molecular flask (CMF), within which 1,8-bis(2-phenylethynyl)naphthalene (bpen), a diarenynyl system primed for cyclization, was exposed to iodine vapor to yield the corresponding indeno[2,1-α]phenalene species. The cyclization process, unique in its vapor-induced, solvent-free nature, was followed spectroscopically, and found to occur concurrently with the displacement of lattice solvent for molecular iodine in CMF⋅0.75 bpen⋅2.

View Article and Find Full Text PDF

A scalable, transferable, cooling crystallisation route to the elusive, metastable, form II of the API acetaminophen (paracetamol) has been developed using a multicomponent "templating" approach, delivering 100% polymorphic phase pure form II at scales up to 120 g. Favourable solubility and stability properties are found for the form II samples.

View Article and Find Full Text PDF

Analysis of neutron and high-resolution X-ray diffraction data on form (III) of carbamazepine at 100 K using the atoms in molecules (AIM) topological approach afforded excellent agreement between the experimental results and theoretical densities from the optimized gas-phase structure and from multipole modelling of static theoretical structure factors. The charge density analysis provides experimental confirmation of the partially localized π-bonding suggested by the conventional structural formula, but the evidence for any significant C-N π bonding is not strong. Hirshfeld atom refinement (HAR) gives H atom positional and anisotropic displacement parameters that agree very well with the neutron parameters.

View Article and Find Full Text PDF

Atmospherically stable porous frameworks and materials are interesting for heterogeneous solid-gas applications. One motivation is the direct and selective uptake of pollutant/hazardous gases, where the material produces a measurable response in the presence of the analyte. In this report, we present a combined experimental and theoretical rationalization for the piezochromic response of a robust and porous molecular crystal built from an extensively fluorinated trispyrazole.

View Article and Find Full Text PDF

5-Ethynyl-1,3-benzenedicarboxylic acid (H2ebdc) reacted with lead(II) acetate trihydrate yields a 1D ladder network, [Pb(ebdc)(MeOH)]2·H2O (1). Removing crystals of 1 from the mother liquor results in a facile single crystal to single crystal transition, yielding 2D [Pb(ebdc)] net (2) with a change in space group from I2/a to P1̄.

View Article and Find Full Text PDF

High resolution X-ray diffraction data on forms I-IV of sulfathiazole and neutron diffraction data on forms II-IV have been collected at 100 K and analyzed using the Atoms in Molecules topological approach. The molecular thermal motion as judged by the anisotropic displacement parameters (adp's) is very similar in all four forms. The adp of the thiazole sulfur atom had the greatest amplitude perpendicular to the five-membered ring, and analysis of the temperature dependence of the adps indicates that this is due to genuine thermal motion rather than a concealed disorder.

View Article and Find Full Text PDF

The solid-state, low-temperature linkage isomerism in a series of five square planar group 10 phosphino nitro complexes have been investigated by a combination of photocrystallographic experiments, Raman spectroscopy and computer modelling. The factors influencing the reversible solid-state interconversion between the nitro and nitrito structural isomers have also been investigated, providing insight into the dynamics of this process. The cis-[Ni(dcpe)(NO2)2] (1) and cis-[Ni(dppe)(NO2)2] (2) complexes show reversible 100 % interconversion between the η(1)-NO2 nitro isomer and the η(1)-ONO nitrito form when single-crystals are irradiated with 400 nm light at 100 K.

View Article and Find Full Text PDF

Controlled introduction of proton transfer into the design of a series of molecular complexes is described, delivering the systematic production of ionic molecular complexes (molecular salts). The controlled production of molecular salts has relevance as a potential strategy in the design of pharmaceutical materials. In nine molecular complexes consisting of bromanilic acid with the N-heterocyclic compounds 2-, 3- and 4-picoline [bis(2/3/4-methylpyridinium) 2,5-dibromo-3,6-dioxocyclohexa-1,4-diene-1,4-diolate, 2C6H8N(+)·C6Br2O4(2-)], 2,3-, 2,4-, 2,5- and 3,5-lutidine [2,3/2,4/2,5/3,5-dimethylpyridinium 2,5-dibromo-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-olate, C7H10N(+)·C6HBr2O4(-)], and 3-bromo-4-methylpyridine [3-bromo-4-methylpyridinium 2,5-dibromo-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-olate, C6H7BrN(+)·C6HBr2O4(-)] and 2-bromo-3-methylpyridine [2-bromo-3-methylpyridine-2,5-dibromo-3,6-dihydroxycyclohexa-2,5-diene-1,4-dione (1/1), C6H6BrN·C6H2Br2O4], proton transfer occurs readily between the bromanilic acid molecule and the N heteroatom of the pyridine ring, in all cases producing a charge-assisted bifurcated N-H.

View Article and Find Full Text PDF

The phenomenon of solid-state proton migration within molecular complexes containing short hydrogen bonds is investigated in two dimethylurea-oxalic acid complexes. Extensive characterisation by both X-ray and neutron diffraction shows that proton migration along the hydrogen bond can be induced in these complexes as a function of temperature. This emphasises the subtle features of the hydrogen bond potential well in such short hydrogen bonded complexes, both intrinsically and in the effect of the local crystalline environment.

View Article and Find Full Text PDF

We demonstrate the extent to which modern detector technology, coupled with a high flux constant wavelength neutron source, can be used to obtain high quality diffraction data from short data collections, allowing the refinement of the full structures (including hydrogen positions) of hydrous compounds from in situ neutron powder diffraction measurements. The in situ thermodiffractometry and controlled humidity studies reported here reveal that important information on the reorientations of structural water molecules with changing conditions can be easily extracted, providing insight into the effects of hydrogen bonding on bulk physical properties. Using crystalline BaCl2·2H2O as an example system, we analyse the structural changes in the compound and its dehydration intermediates with changing temperature and humidity levels to demonstrate the quality of the dynamic structural information on the hydrogen atoms and associated hydrogen bonding that can be obtained without resorting to sample deuteration.

View Article and Find Full Text PDF

A new functionalized bis-pyrazol-pyridine ligand has been prepared by reaction with hydrazine of the corresponding bis-β-diketone precursor, also unprecedented. The aerobic reaction of this ligand with ferrous thiocyanate in the presence of ascorbic or oxalic acid affords the dinuclear complex of seven-coordinate Fe(III), [Fe₂(H₄L2)₂(ox)(NCS)₄] (1), as revealed by single crystal X-ray diffraction. This may represent an entry into a new family of [Fe₂] compounds with heptacoordinate metal centres.

View Article and Find Full Text PDF

Historically the extraction of high-quality crystallographic information from inorganic samples having high hydrogen contents, such as metal hydrides, has involved preparing deuterated samples prior to study using neutron powder diffraction. We demonstrate, through direct comparison of the crystal structure refinements of the binary hydrides SrH(2) and BaH(2) with their deuteride analogues at 2 K and as a function of temperature, that precise and accurate structural information can be obtained from rapid data collections from samples containing in excess of 60 at.% hydrogen using modern high-flux, medium resolution, continuous wavelength neutron powder diffraction instruments.

View Article and Find Full Text PDF

A controlled-humidity sample environment has been constructed, allowing bulk powder samples undergoing humidity-induced phase transitions and reactions to be studied via in situ neutron diffraction. Associated developments in data collection and analysis permit this to be achieved without the use of D(2)O.

View Article and Find Full Text PDF

The dSNAP computer program has been used to classify searches of the Cambridge Structural Database for two ligands: -O-CH(2)-CH(2)-O- and N(CH(2)CH(2)O-)(3) commonly found in metal-organic systems. The clustering method used is based on total geometries (i.e.

View Article and Find Full Text PDF

Two polymorphs of the 2:1 molecular complex of isonicotinamide and oxalic acid have been characterized by combined X-ray charge density and single-crystal neutron diffraction studies at 100 K. Both polymorphs show strong O-H..

View Article and Find Full Text PDF

A high-resolution single-crystal X-ray study of paracetamol has been performed at 85 K. Different approaches to modeling the experimental electron density (ED) were tested for the dynamically disordered portions of the molecule in order to check to what extent it is possible to obtain a proper ED distribution in the ordered part. Models were examined in which the methyl-group ED was built from pseudoatoms taken from the University at Buffalo Pseudoatom Databank or the Invariom database, with multipole parameters for the remaining atoms being obtained from free refinement.

View Article and Find Full Text PDF

Hydrogen forms more compounds than any other element in the Periodic Table, yet methods for accurately, precisely and rapidly determining its position in a crystal structure are not readily available. The latest generation of high-flux neutron powder diffractometers, operating under optimised collection geometries, allow hydrogen positions to be extracted from the diffraction patterns of polycrystalline hydrogenous compounds without resorting to isotopic substitution. Neutron powder diffraction for hydrogenous materials has a wide range of applications within chemistry.

View Article and Find Full Text PDF