Publications by authors named "Wilson C W Chan"

Apoptosis occurs during development when a separation of tissues is needed. Synovial joint formation is initiated at the presumptive site (interzone) within a cartilage anlagen, with changes in cellular differentiation leading to cavitation and tissue separation. Apoptosis has been detected in phalangeal joints during development, but its role and regulation have not been defined.

View Article and Find Full Text PDF

Hypertrophic chondrocytes are found at unique locations at the junction of skeletal tissues, cartilage growth plate, articular cartilage, enthesis and intervertebral discs. Their role in the skeleton is best understood in the process of endochondral ossification in development and bone fracture healing. Chondrocyte hypertrophy occurs in degenerative conditions such as osteoarthritis.

View Article and Find Full Text PDF

Mice are commonly used to study intervertebral disc (IVD) biology and related diseases such as IVD degeneration. Discs from both the lumbar and tail regions are used. However, little is known about compartmental characteristics in the different regions, nor their relevance to the human setting, where a functional IVD unit depends on a homeostatic proteome.

View Article and Find Full Text PDF

Mice have been increasingly used as preclinical model to elucidate mechanisms and test therapeutics for treating intervertebral disc degeneration (IDD). Several intervertebral disc (IVD) histological scoring systems have been proposed, but none exists that reliably quantitate mouse disc pathologies. Here, we report a new robust quantitative mouse IVD histopathological scoring system developed by building consensus from the spine community analyses of previous scoring systems and features noted on different mouse models of IDD.

View Article and Find Full Text PDF

Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes.

View Article and Find Full Text PDF

Cellular plasticity refers to the ability of cell fates to be reprogrammed given the proper signals, allowing for dedifferentiation or transdifferentiation into different cell fates. , this can be induced through direct activation of gene expression, however this process does not naturally occur . Instead, the microenvironment consisting of the extracellular matrix (ECM) and signaling factors, directs the signals presented to cells.

View Article and Find Full Text PDF

The synovial joint forms from a pool of progenitor cells in the future region of the joint, the interzone. Expression of Gdf5 and Wnt9a has been used to mark the earliest cellular processes in the formation of the interzone and the progenitor cells. However, lineage specification and progression toward the different tissues of the joint are not well understood.

View Article and Find Full Text PDF

The integrated stress response (ISR) is activated by diverse forms of cellular stress, including endoplasmic reticulum (ER) stress, and is associated with diseases. However, the molecular mechanism(s) whereby the ISR impacts on differentiation is incompletely understood. Here, we exploited a mouse model of Metaphyseal Chondrodysplasia type Schmid (MCDS) to provide insight into the impact of the ISR on cell fate.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IDD) causes back pain and sciatica, affecting quality of life and resulting in high economic/social burden. The etiology of IDD is not well understood. Along with aging and environmental factors, genetic factors also influence the onset, progression and severity of IDD.

View Article and Find Full Text PDF

Bone remodeling is a balanced process between bone synthesis and degradation, maintaining homeostasis and a constant bone mass in adult life. Imbalance will lead to conditions such as osteoporosis or hyperostosis. Osteoblasts build bone, becoming embedded in bone matrix as mature osteocytes.

View Article and Find Full Text PDF

A new scoring system based on histo-morphology of mouse intervertebral disc (IVD) was established to assess changes in different mouse models of IVD degeneration and repair. IVDs from mouse strains of different ages, transgenic mice, or models of artificially induced IVD degeneration were assessed. Morphological features consistently observed in normal, and early/later stages of degeneration were categorized into a scoring system focused on nucleus pulposus (NP) and annulus fibrosus (AF) changes.

View Article and Find Full Text PDF

The intervertebral disc (IVD) is a complex fibrocartilaginous structure located between the vertebral bodies that allows for movement and acts as a shock absorber in our spine for daily activities. It is composed of three components: the nucleus pulposus (NP), annulus fibrosus, and cartilaginous endplate. The characteristics of these cells are different, as they produce specific extracellular matrix (ECM) for tissue function and the niche in supporting the differentiation status of the cells in the IVD.

View Article and Find Full Text PDF

The intervertebral disks along the spine provide motion and protection against mechanical loading. The 3 structural components, nucleus pulposus, annulus fibrosus, and cartilage endplate, function as a synergistic unit, though each has its own role. The cells within each of these components have distinct origins in development and morphology, producing specific extracellular matrix proteins that are organized into unique architectures fit for intervertebral disk function.

View Article and Find Full Text PDF

Multiple osteochondromas (MO) is an autosomal-dominant disorder and mutations in EXT1 and EXT2 account up to 78% of the cases studied, including missense, nonsense, frameshift, and splice-site mutations. EXT1 and EXT2 encode glycosyltransferases required for the synthesis of heparan sulfate (HS) chains. The molecular pathogenesis underlying these mutations is still largely unknown.

View Article and Find Full Text PDF

Various imaging techniques have been used to assess degeneration of the intervertebral disc, including many histological methods, but cartilage-oriented histological stains do not clearly show the comparatively complex structures of the disc. In addition, there is no integrated method to assess efficiently both the compartmental organization and matrix composition in disc samples. In this study, a novel histological method, termed FAST staining, has been developed to investigate disc growth and degeneration by sequential staining with fast green, Alcian blue, Safranin-O, and tartrazine to generate multichromatic histological profiles (FAST profiles).

View Article and Find Full Text PDF

In protein folding and secretion disorders, activation of endoplasmic reticulum (ER) stress signaling (ERSS) protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs) during endochondral bone formation.

View Article and Find Full Text PDF