Successful proteome analysis requires reliable sample preparation beginning with protein solubilization and ending with a sample free of contaminants, ready for downstream analysis. Most proteome sample preparation technologies utilize precipitation or filter-based separation, both of which have significant disadvantages. None of the current technologies are able to prepare both intact proteins or digested peptides.
View Article and Find Full Text PDFThe molecular sieving properties of protein surface-attached polymers are the central features in how polymers extend therapeutic protein lifetimes in vivo. Yet, even after 30 years of research, permeation rates of molecules through polymer-surrounded protein surfaces are largely unknown. As a result, the generation of protein-polymer conjugates remains a stochastic process, unfacilitated by knowledge of structure-function-polymer architecture relationships.
View Article and Find Full Text PDFWe have developed a technology to incorporate micronized titanium dioxide (TiO(2)), together with antioxidants, in particles of a UV-visible transparent polymer gel. These particles are coated with silica to avoid clustering and the size of the micronized TiO(2) reduces the back scattering of white light. gel-trapped TiO(2) minimizes the oxidative stress exerted by UV radiation, increases the photo-stability of some accompanying ingredients, such as avobenzone.
View Article and Find Full Text PDFChem Commun (Camb)
December 2007
Chemical grafting of anti-oxidant molecules with an additional hydrophobic polymer coating directly onto TiO(2) particle surfaces, using sonochemistry, is found to eliminate photocatalytic degradation enabling highly effective screening against UV radiation.
View Article and Find Full Text PDF