Telomeres cap the ends of linear chromosomes and terminate in a single-stranded DNA (ssDNA) overhang recognized by POT1-TPP1 heterodimers to help regulate telomere length homeostasis. Here hydroxyl radical footprinting coupled with mass spectrometry was employed to probe protein-protein interactions and conformational changes involved in the assembly of telomere ssDNA substrates of differing lengths bound by POT1-TPP1 heterodimers. Our data identified environmental changes surrounding residue histidine 266 of POT1 that were dependent on telomere ssDNA substrate length.
View Article and Find Full Text PDFPancreatic ductal adenocarcinomas (PDAC) are deadly on account of the delay in diagnosis and dearth of effective treatment options for advanced disease. The insurmountable hurdle of targeting oncogene KRAS, the most prevalent genetic mutation in PDAC, has delayed the availability of targeted therapy for PDAC patients. An alternate approach is to target other tumour-exclusive effector proteins important in RAS signalling.
View Article and Find Full Text PDFTelomerase, a unique reverse transcriptase that specifically extends the ends of linear chromosomes, is up-regulated in the vast majority of cancer cells. Here, we show that an indole nucleotide analog, 5-methylcarboxyl-indolyl-2'-deoxyriboside 5'-triphosphate (5-MeCITP), functions as an inhibitor of telomerase activity. The crystal structure of 5-MeCITP bound to the Tribolium castaneum telomerase reverse transcriptase reveals an atypical interaction, in which the nucleobase is flipped in the active site.
View Article and Find Full Text PDFTelomerase, the end-replication enzyme, is reactivated in malignant cancers to drive cellular immortality. While this distinction makes telomerase an attractive target for anti-cancer therapies, most approaches for inhibiting its activity have been clinically ineffective. As opposed to inhibiting telomerase, we use its activity to selectively promote cytotoxicity in cancer cells.
View Article and Find Full Text PDFTelomeres are specialized nucleoprotein complexes that comprise the ends of linear chromosomes. Human telomeres end in a short, single-stranded DNA (ssDNA) overhang that is recognized and bound by two telomere proteins, POT1 and TPP1. Whereas POT1 binds directly to telomere ssDNA, its interaction with TPP1 is essential for localization of POT1 to the telomere.
View Article and Find Full Text PDFTelomeres are nucleoprotein complexes that reside at the ends of linear chromosomes and help maintain genomic integrity. Protection of telomeres 1 (POT1) and TPP1 are telomere-specific proteins that bind as a heterodimer to single-stranded telomere DNA to prevent illicit DNA damage responses and to enhance telomerase-mediated telomere extension. Telomere DNA is guanosine rich and, as such, can form highly stable secondary structures including G-quadruplexes.
View Article and Find Full Text PDF