Publications by authors named "Wilmer J Cuellar"

Cassava frogskin disease (CFSD) emerged in the Americas in the 1970s, but its causal agent has to date remained a mystery. The clonal propagation of cassava, high incidence of mixed infections, unknown alternative hosts, and root symptoms taking two or more crop cycles to develop, have made it difficult to identify the causal agent. Consequently, most studies on CFSD have produced a catalogue of pathogens occurring in affected plants.

View Article and Find Full Text PDF
Article Synopsis
  • - Researchers isolated and cultured a specific fungus (Ceratobasidium sp.) from cassava showing symptoms of witches' broom disease (CWBD) in Southeast Asia, a region affected by this serious crop disease.
  • - Genome analysis revealed that this fungus is a strain of C. theobromae, which is also responsible for another disease affecting cacao plants in the area, indicating a close genetic relationship between the two.
  • - The study utilized RNAscope® technology to map the distribution of the pathogen within the cassava plant, highlighting the potential for healthy planting material to be sourced from symptom-free areas, which is crucial for developing effective disease management strategies.
View Article and Find Full Text PDF

Sri Lankan cassava mosaic virus (SLCMV) is a prominent causative agent of cassava mosaic disease in Asia and relies on the whitefly Bemisia tabaci cryptic complex for its transmission. However, the molecular mechanisms involved in SLCMV transmission by B. tabaci have yet to be understood.

View Article and Find Full Text PDF

Cassava witches' broom disease (CWBD) is a devastating disease of cassava in Southeast Asia (SEA), of unknown etiology. Affected plants show reduced internodal length, proliferation of leaves and weakening of stems. This results in poor germination of infected stem cuttings (i.

View Article and Find Full Text PDF

Plant viruses pose a continuous and serious threat to crop production worldwide, and globalization and climate change are exacerbating the establishment and rapid spread of new viruses. Simultaneously, developments in genome sequencing technology, nucleic acid amplification methods, and epidemiological modeling are providing plant health specialists with unprecedented opportunities to confront these major threats to the food security and livelihoods of millions of resource-constrained smallholders. In this perspective, we have used recent examples of integrated application of these technologies to enhance understanding of the emergence of plant viral diseases of key food security crops in low- and middle-income countries.

View Article and Find Full Text PDF

Cassava witches' broom disease (CWBD) is one of the main diseases of cassava in Southeast Asia (SEA). Affected cassava plants show reduced internodal length and proliferation of leaves (phyllody) in the middle and top part of the plant, which results in reduced root yields of 50% or more. It is thought to be caused by phytoplasma; however, despite its widespread distribution in SEA still little is known about CWBD pathology.

View Article and Find Full Text PDF

Virome analysis high-throughput sequencing (HTS) allows rapid and massive virus identification and diagnoses, expanding our focus from individual samples to the ecological distribution of viruses in agroecological landscapes. Decreases in sequencing costs combined with technological advances, such as automation and robotics, allow for efficient processing and analysis of numerous samples in plant disease clinics, tissue culture laboratories, and breeding programs. There are many opportunities for translating virome analysis to support plant health.

View Article and Find Full Text PDF

Cassava Mosaic Disease (CMD) caused by Sri Lankan cassava mosaic virus (SLCMV), has rapidly spread in Southeast Asia (SEA) since 2016. Recently it has been documented in Lao PDR. Previous reports have identified whitefly species of as potential vectors of CMD in SEA, but their occurrence and distribution in cassava fields is not well known.

View Article and Find Full Text PDF

Fusarium oxysporum f. sp. tropical race 4 (Foc TR4) is the causal agent of Fusarium wilt, a major threat to the banana industry worldwide.

View Article and Find Full Text PDF

Cassava frogskin disease (CFSD) is a graft-transmissible disease of cassava reported for the first time in the 1970s, in Colombia. The disease is characterized by the formation of longitudinal lip-like fissures on the peel of the cassava storage roots and a progressive reduction in fresh weight and starch content. Since its first report, different pathogens have been identified in CFSD-affected plants and improved sequencing technologies have unraveled complex mixed infections building up in plants with severe root symptoms.

View Article and Find Full Text PDF

Next generation sequencing has been used to identify and characterize the full genome sequence of a cassava-infecting torradovirus, revealing the presence of a Maf/HAM1 domain downstream of the RNA-dependent RNA-polymerase (RdRp) domain in RNA1 in all isolates sequenced. A similar domain is also found in unrelated potyvirids infecting Euphorbiaceae hosts in the Americas and cassava in Africa. Even though cassava torrado-like virus (CsTLV) could not be mechanically transmitted to a series of herbaceous hosts, it can be efficiently transmitted by bud graft-inoculation to different cassava landraces.

View Article and Find Full Text PDF

We report the complete genome sequence of a field isolate of a novel bipartite secovirid infecting cassava in Colombia, provisionally named "cassava torrado-like virus" (CsTLV). The genome sequence was obtained using Oxford Nanopore Technology, and the 5' ends were confirmed by RACE. The RNA1 is 7252 nucleotides (nt) long, encoding a polyprotein of 2336 amino acids (aa) containing the typical "replication block", conserved torradovirus motifs, and a Maf/Ham1 domain, which is not commonly found in viral genomes.

View Article and Find Full Text PDF

Our group works on the detection and characterization of cassava viruses, supporting projects that involve large scale pathogen surveillance activities and resistance screening assays in multiple and remote locations. In order to comply with these applications, nucleic acid isolation protocols need to be cost effective, adjusted for samples that will stand long distance transport and harsh storage conditions, while maximizing the yield and quality of the nucleic acid extracts obtained. The method we describe here has been widely used and validated using different downstream tests (including, but not limited to, Rolling Circle Amplification and Illumina and Nanopore sequencing), but is currently unpublished.

View Article and Find Full Text PDF

Many viral pathogens of global importance to plant and animal health are persistently transmitted by insect vectors. Midgut of insects forms the first major barrier that these viruses encounter during their entry into the vectors. However, the vector ligand(s) involved in the movement of plant viruses across the midgut barrier remains largely uncharacterized.

View Article and Find Full Text PDF

Cassava ( Crantz) has been traditionally grown as a subsistence crop in Laos, but in recent years cassava cultivation in this country has expanded and is becoming a 'cash crop' for farmers (Malik et al., 2020). This also means that cassava vegetative seed (stakes) is rapidly multiplied and distributed.

View Article and Find Full Text PDF

The morphological identification of mites entails great challenges. Characteristics such as dorsal setae and aedeagus are widely used, but they show variations between populations, and the technique is time consuming and demands specialized taxonomic expertise that is difficult to access. A successful alternative has been to exploit a region of the mitochondrial cytochrome oxidase I (COI) gene to classify specimens to the species level.

View Article and Find Full Text PDF

The geographic pattern of cropland is an important risk factor for invasion and saturation by crop-specific pathogens and arthropods. Understanding cropland networks supports smart pest sampling and mitigation strategies. We evaluate global networks of cropland connectivity for key vegetatively propagated crops (banana and plantain, cassava, potato, sweet potato, and yam) important for food security in the tropics.

View Article and Find Full Text PDF

We report the genome sequence of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolate obtained from a patient with symptoms of coronavirus disease 2019 (COVID-19) who was infected in Cali, Colombia. The patient had no recent travel record and did not require hospitalization. The virus genome was obtained using Oxford Nanopore MinION sequencing.

View Article and Find Full Text PDF

Moko is one of the main diseases affecting banana and plantain in Colombia. Here, we report the genome sequence of the causal agent, the bacterium (Smith) strain CIAT-078, collected in 2004 from affected plantains in central-west Colombia. The assembled genome was obtained using Oxford Nanopore Technology.

View Article and Find Full Text PDF

Emergent agricultural pathogens cause severe damage worldwide and their invasive potential is significantly increased by global trade, crop intensification and climate change. Standard surveillance and diagnostic protocols need to be evaluated and implemented, particularly with diseases caused by a wide range of pathogens that induce similar symptoms. Such is the case with Cassava Mosaic Disease (CMD) present in Africa and Asia, and associated with mixed virus infections and recombinant and re-assorted virus strains.

View Article and Find Full Text PDF

Sweet potato is among the most important root crops worldwide, particularly in developing countries, and its production is affected severely by a variety of virus diseases. During the last decade, a number of new viruses have been discovered in sweet potatoes through next-generation sequencing studies. Among them are viruses belonging to the genus and collectively assigned to the species (SPPV).

View Article and Find Full Text PDF

Potato yellowing virus (PYV, original code SB-22), an unassigned member of the Genus Ilarvirus Family Bromoviridae, has been reported infecting potatoes in Peru, Ecuador and Chile. It is associated with symptomless infections, however yellowing of young leaves has been observed in some potato cultivars. Thirteen potato and yacon isolates were selected after routine screening of CIP-germplasm and twenty-four were identified from 994 potato plants collected in Peru whereas one was intercepted from yacon in the UK.

View Article and Find Full Text PDF

Sri Lankan cassava mosaic virus is an emerging pathogen in Southeast Asia. Here, we report the complete genome of a Thai isolate obtained using Nanopore technology. The isolate was collected in 2019 from the northeastern province of Surin, soon after disease eradication was reported in the country.

View Article and Find Full Text PDF

We describe here the complete genome of The sequenced isolate was obtained by insect vector transmission from a symptomatic rice sample grown in Colombia. Sequence data from the four RNA components were obtained by deep sequencing (Illumina), and infections were confirmed by enzyme-linked immunosorbent assay and Sanger sequencing.

View Article and Find Full Text PDF

Several potexviruses (Family Alphaflexiviridae) have been reported infecting cassava (Manihot esculenta Crantz) in the Americas. They were isolated from severely diseased plants during the last 30-40 years and include: Cassava common mosaic virus (CsCMV), Cassava Caribbean mosaic virus (CsCaMV), Cassava Colombian symptomless virus (CsCSV) and Cassava virus X (CsVX). However, their definitive classification as distinct species remains unresolved for several reasons, including the lack of sequence data and unavailability of samples from original isolates.

View Article and Find Full Text PDF