J Steroid Biochem Mol Biol
February 2024
Prostate cancer (PC) is dependent on androgen receptor (AR) activation by testosterone and 5α-dihydrotestosterone (DHT). Intratumoral androgen accumulation and activation despite systemic androgen deprivation therapy underlies the development of castration-resistant PC (CRPC), but the precise pathways involved remain controversial. Here we investigated the differential contributions of de novo androgen biosynthesis and androgen precursor conversion to androgen accumulation.
View Article and Find Full Text PDFResistance to taxane chemotherapy is frequently observed in metastatic prostate cancer. The androgen receptor (AR) is a major driver of prostate cancer and a key regulator of the G1-S cell-cycle checkpoint, promoting cancer cell proliferation by irreversible passage to the S-phase. We hypothesized that AR signaling inhibitor (ARSi) darolutamide in combination with docetaxel could augment antitumor effect by impeding the proliferation of taxane-resistant cancer cells.
View Article and Find Full Text PDFCastration-resistant prostate cancer (CRPC) remains an incurable and lethal malignancy. The development of new CRPC treatment strategies is strongly impeded by the scarcity of representative, scalable and transferable preclinical models of advanced, androgen receptor (AR)-driven CRPC. Here, we present contemporary patient-derived xenografts (PDXs) and matching PDX-derived organoids (PDXOs) from CRPC patients who had undergone multiple lines of treatment.
View Article and Find Full Text PDFTreatment of prostate cancer (PCa) has changed considerably in the last decade due to the introduction of novel androgen receptor (AR)-targeted agents (ARTAs) for patients progressing on androgen deprivation therapy (ADT). Preclinical research however still relies heavily on AR-negative cell line models. In order to investigate potential differences in castration-resistant PCa (CRPC) growth, we set out to create a comprehensive panel of ARTA-progressive models from 4 androgen-responsive AR wild-type PCa cell lines and analyzed its androgen response as opposed to its ADT-progressive counterparts.
View Article and Find Full Text PDFIntroduction: Castration-resistant prostate cancer (CRPC) remains dependent on androgen receptor (AR) signalling, which is largely driven by conversion of adrenal androgen precursors lasting after castration. Abiraterone, an inhibitor of the steroidogenic enzyme CYP17A1, has been demonstrated to reduce adrenal androgen synthesis and prolong CRPC patient survival. To study mechanisms of resistance to castration and abiraterone, we created coculture models using human prostate and adrenal tumours.
View Article and Find Full Text PDFBackground: Intratumoral steroidogenesis and its potential relevance in castration-resistant prostate cancer (CRPC) and in cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1)-inhibitor treated hormone-naïve and patients with CRPC are not well established. In this study, we tested if substrates for de novo steroidogenesis accumulating during CYP17A1 inhibition may drive cell growth in relevant preclinical models.
Methods: PCa cell lines and their respective CRPC sublines were used to model CRPC in vitro.
This study describes a novel xenograft-based biomarker discovery platform and proves its usefulness in the discovery of serum markers for prostate cancer. By immunizing immuno-competent mice with serum from nude mice bearing prostate cancer xenografts, an antibody response against xenograft-derived antigens was elicited. By probing protein microarrays with serum from immunized mice, several prostate cancer-derived antigens were identified, of which a subset was successfully retrieved in serum from mice bearing prostate cancer xenografts and prevalidated in human serum samples of prostate cancer patients.
View Article and Find Full Text PDFProstate cancer consists of secretory cells and a population of immature cells. The function of immature cells and their mutual relation with secretory cells are still poorly understood. Immature cells either have a hierarchical relation to secretory cells (stem cell model) or represent an inducible population emerging upon appropriate stimulation of differentiated cells.
View Article and Find Full Text PDF