Publications by authors named "Wilma Busser"

Selective oxidation of higher alcohols using heterogeneous catalysts is an important reaction in the synthesis of fine chemicals with added value. Though the process for primary alcohol oxidation is industrially established, there is still a lack of fundamental understanding considering the complexity of the catalysts and their dynamics under reaction conditions, especially when higher alcohols and liquid-phase reaction media are involved. Additionally, new materials should be developed offering higher activity, selectivity, and stability.

View Article and Find Full Text PDF

Highly selective one-step hydrogenation of phenol to cyclohexanone, an important intermediate in the production of nylon 6 and nylon 66, is desirable but remains a challenge. Pd nanoparticles supported on nitrogen- and oxygen-functionalized carbon nanotubes (NCNTs, OCNTs) were prepared, characterized, and applied in the hydrogenation of phenol to cyclohexanone to study the effect of N-doping. Almost full conversion of phenol with high selectivity to cyclohexanone was achieved over Pd/NCNT under mild reaction conditions using either H or formic acid (FA) as a hydrogen source.

View Article and Find Full Text PDF

To improve the photocatalytic oxidation of α-C-H bonds in unsaturated hydrocarbons, N-hydroxyphthalimide (NHPI) was used as a molecular cocatalyst with CdS as the photoabsorber. Compared with previously reported photocatalysts involving solid cocatalysts, metal-free NHPI offers better sustainability in addition to the significantly enhanced performance as cocatalyst. The photogenerated holes were transferred into the more active phthalimide-N-oxyl radical (PINO) by reacting with NHPI.

View Article and Find Full Text PDF

Photocatalytic oxidation of organic compounds on semiconductors provides a mild approach for organic synthesis and solar energy utilization. Herein, we identify the key points for the photocatalytic oxidation over Pt-loaded Rh-doped strontium titanate allowing the conversion of alcohols efficiently and selectively to aldehydes and ketones under anaerobic conditions and visible light with an apparent quantum efficiency of pure benzyl alcohol oxidation at 420 nm of ≤49.5%.

View Article and Find Full Text PDF

Chemical vapor synthesis (CVS) is a unique method to prepare well-defined photocatalyst materials with both large specific surface area and a high degree of crystallinity. The obtained β-Ga O nanoparticles were optimized for photocatalysis by reductive photodeposition of the Rh/CrO co-catalyst system. The influence of the degree of crystallinity and the specific surface area on photocatalytic aqueous methanol reforming and overall water splitting (OWS) was investigated by synthesizing β-Ga O samples in the temperature range from 1000 °C to 1500 °C.

View Article and Find Full Text PDF

Split second: The photocatalytic activity of gallium oxide (β-Ga2 O3) depends strongly on the co-catalysts CuOx and chromia, which can be efficiently deposited in a stepwise manner by photoreduction of Cu(2+) and CrO4 (2-). The water-splitting activity can be tuned by varying the Cu loading in the range 0.025-1.

View Article and Find Full Text PDF

The deposition of hydrogen evolution sites on photocatalysts is a crucial step in the multistep process of synthesizing a catalyst that is active for overall photocatalytic water splitting. An alternative approach to conventional photodeposition was developed, applying the photocatalytic reforming of aqueous methanol solutions to deposit metal particles on semiconductor materials such as Ga₂O₃ and (Ga₀.₆ Zn₀.

View Article and Find Full Text PDF

(111)-layered Ba5Ta4O15 photocatalysts were synthesised by a solid state reaction route and a citrate synthesis route, and their structural and electronic properties were investigated. After citrate route preparation, the presence of a second phase, namely Ba3Ta5O15, was determined by X-ray powder diffraction and absorption spectroscopy. The existence of this phase had a profound effect on the photocatalytic activity of this Ba5Ta4O15/Ba3Ta5O15 composite in comparison to the pure Ba5Ta4O15 materials.

View Article and Find Full Text PDF

Nitrogen-containing functional groups were generated on the surface of partially oxidized multi-walled carbon nanotubes (CNTs) via post-treatment in ammonia. The treatment temperature was varied in order to tune the amount and type of nitrogen- and oxygen-containing functional groups, which were studied using high-resolution X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD). The surface defects on CNTs due to the incorporation of nitrogen were investigated by Raman spectroscopy.

View Article and Find Full Text PDF

The adsorption of CO on polycrystalline TiO2 was investigated by static adsorption microcalorimetry. The initial differential heat of adsorption (qdiff,0) of CO on polycrystalline titania is 40 kJ/mol, and the standard adsorption entropy (Deltas0) is -104 J mol(-1) K(-1). These results are consistent with those derived from temperature-programmed desorption and FTIR results in the literature.

View Article and Find Full Text PDF