Publications by authors named "Wilm Pickhardt"

This paper presents a novel approach for the selective oxidation of alcohols to their corresponding aldehydes through direct mechanocatalysis, employing a gold-coated milling vessel as catalyst and air as the oxidation agent. By adjusting milling frequency, media, and duration, high catalytic efficiencies and selectivities are achieved. Remarkably, yields of up to 99 % are obtained for specific substrates, with a turnover number (TON) of 8200 and a turnover frequency (TOF) of 0.

View Article and Find Full Text PDF

This work establishes the first direct mechanocatalytic reaction protocol within an extruder, focusing on the Suzuki-Miyaura reaction. Through the coating of either the extruder screws or barrel with Pd, we executed the cross-coupling reaction without the reliance on molecular catalyst compounds or powders, and solvents continuously. We identified the influence and interplay of crucial reaction parameters such as temperature, mechanical energy input, residence time, rheology, and catalyst contact time and finally obtained 36 % and 75 % of the reaction product after one and four reactor passes respectively.

View Article and Find Full Text PDF

Here we describe the development of a sustainable and cost-effective approach for catalytic cross-coupling reactions in mechanochemistry. It is found that the substrate's impact with the vessel wall alone is sufficient to initiate the reaction, thus indicating that milling balls function primarily as a mixing agent for direct mechanocatalytic Suzuki coupling. The absence of milling balls can be offset by adjusting the rheology using liquid-assisted grinding (LAG).

View Article and Find Full Text PDF

Utilizing direct mechanocatalytical conditions, the Sonogashira coupling was successfully performed on the surface of milling tools by using pure Pd and Pd coated steel balls. The optimization of co-catalyst forming additives led to a protocol, which generates quantitative yields under aerobic conditions for various substrates within as little as 90 minutes. Using state-of-the-art spectroscopic, diffractive, as well as in situ methods lead to the identification of a previously unknown and highly reactive complex of the co-catalyst copper.

View Article and Find Full Text PDF

The molecular Suzuki cross-coupling reaction was conducted mechanochemically, without solvents, ligands, or catalyst powders. Utilizing one catalytically active palladium milling ball, products could be formed in quantitative yield in as little as 30 min. In contrast to previous reports, the adjustment of milling parameters led to the complete elimination of abrasion from the catalyst ball, thus enabling the first reported systematic catalyst analysis.

View Article and Find Full Text PDF

The edge chlorination of the benchmark nanographenes triphenylene and hexa--hexabenzocoronene is conducted mechanochemically. This approach overcomes solubility limitations and eliminates the need for elaborate chlorination conditions. Additionally, the planarization of oligophenylenes and their edge-chlorination can be combined in a one-pot approach requiring as little as 60 minutes.

View Article and Find Full Text PDF

1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT CN) was synthesized mechanochemically at room temperature. The coupling of hexaketocyclohexane and diaminomaleonitrile was conducted in 10 min by vibratory ball milling. The effects of milling parameters, acids, dehydrating agents, and liquid-assisted grinding were rationalized.

View Article and Find Full Text PDF

Direct mechanocatalysis describes catalytic reactions under the involvement of mechanical energy with the distinct feature of milling equipment itself being the catalyst. This novel type of catalysis features no solubility challenges of the catalysts nor the substrate and on top offering most facile way of separation.

View Article and Find Full Text PDF