Publications by authors named "Willy van Driessche"

Cystic fibrosis (CF), a lethal hereditary disease caused by mutations in the (CFTR) gene coding for an epithelial chloride channel, is characterized by an imbalanced homeostasis of ion and water transports in secretory epithelia. As the disease is single-gene based, using therapeutic mRNA is a promising concept of treatment in order to correct many aspects of the fatal pathology on a cellular level. Hence, we developed chitosan nanocapsules surface-loaded with wtCFTR-mRNA to restore CFTR function.

View Article and Find Full Text PDF

Hypertonic saline (HS) inhalation therapy benefits cystic fibrosis (CF) patients [Donaldson SH, Bennet WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. N Engl J Med 354: 241-250, 2006; Elkins MR, Robinson M, Rose BR, Harbour C, Moriarty CP, Marks GB, Belousova EG, Xuan W, Bye PT; the National Hypertonic Saline in Cystic Fibrosis (NHSCF) Study Group. N Engl J Med 354: 229-240, 2006].

View Article and Find Full Text PDF

Background: Epithelial barrier disturbance is thought to contribute to the pathogenesis of inflammatory bowel diseases; however, it remains unclear whether it is a primary defect participating to the onset of inflammation or only a consequence of sustained inflammation.

Methods: A time course study of epithelial barrier functions and immune mediators was performed in the CD4(+)CD45RB(hi) T cell transfer model of colitis using Ussing chambers.

Results: In nonreconstituted severe combined immunodeficiency (SCID) mice, no epithelial dysfunction was observed.

View Article and Find Full Text PDF

Background: Cystic fibrosis (CF) respiratory epithelia are characterized by a defect Cl(-) secretion and an increased Na(+) absorption through epithelial Na(+) channels (ENaC). The present study aimed to find an effective inhibitor of human ENaC with respect to replacing amiloride therapy for CF patients. Therefore, we developed specific antisense oligonucleotides (AON) that efficiently suppress Na(+) hyperabsorption by inhibiting the expression of the alpha-ENaC subunit.

View Article and Find Full Text PDF

The expression of the epithelial Na+ channel (ENaC) is tissue-specific and dependent on a variety of mediators and interacting proteins. Here we examined the role of intracellular Na+ ([Na+](i)) as a modulator of the expression of rat ENaC in Xenopus laevis oocytes. We manipulated [Na+](i) of ENaC-expressing oocytes in the range of 0-20 mM by incubating in extracellular solutions of different [Na+](o).

View Article and Find Full Text PDF

In this synopsis of a symposium at EB2007, we start with an overview of noise and impedance analyses that have been applied to various epithelial barriers. Noise analysis yields specific information about ion channels and their regulation in epithelial and endothelial barriers. Impedance analysis can yield information about apical and basolateral membrane conductances and paracellular conductance of both epithelial and endothelial barriers.

View Article and Find Full Text PDF

This study describes the correlation between cell swelling-induced K+ efflux and volume regulation efficiency evaluated with agents known to modulate ion channel activity and/or intracellular signaling processes in a human bronchial epithelial cell line, 16HBE14o(-1). Cells on permeable filter supports, differentiated into polarized monolayers, were monitored continuously at room temperature for changes in cell height (T(c)), as an index of cell volume, whereas (86)Rb efflux was assessed for K+ channel activity. The sudden reduction in osmolality of both the apical and basolateral perfusates (from 290 to 170 mosmol/kg H(2)O) evoked a rapid increase in cell volume by 35%.

View Article and Find Full Text PDF

Regulatory volume decrease (RVD) is a protective mechanism that allows mammalian cells to restore their volume when exposed to a hypotonic environment. A key component of RVD is the release of K(+), Cl(-), and organic osmolytes, such as taurine, which then drives osmotic water efflux. Previous experiments have indicated that caveolin-1, a coat protein of caveolae microdomains in the plasma membrane, promotes the swelling-induced Cl(-) current (I(Cl,swell)) through volume-regulated anion channels.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how Na+ transport regulation in renal epithelia is influenced by cholesterol levels in both apical and basolateral membranes.
  • The researchers found that removing cholesterol from the apical membrane did not significantly impact overall electrical activity, but removing it from the basolateral membrane led to a decrease in Na+/K+ pump activity.
  • Additionally, cholesterol extraction from the apical membrane lowered the likelihood of sodium channel openings, thereby affecting the transport response to various stimuli like hypotonicity and hormonal activation.
View Article and Find Full Text PDF

UTP-induced chloride secretion by the intestinal mucosa mounted in Ussing chambers was assessed by measurement of the short-circuit current (I(sc)) in the presence of phloridzin in the case of jejunum or amiloride in the case of colon to eliminate any contribution of electrogenic Na(+) movement to the net ionic transport. Since we have previously demonstrated the absence of chloride-secretory response to apical UTP in the jejunum from P2Y(4)-null mice, in the present study we studied the response to basolateral UTP in the jejunum and to either apical or basolateral UTP in the colon, in both P2Y(2)- and P2Y(4)-deficient mice. In the jejunum, the chloride-secretory response to basolateral UTP was partially reduced in both P2Y(2)- (40%) and P2Y(4)- (60%) null mice.

View Article and Find Full Text PDF

The epithelial Na+ channel (ENaC) is modulated by various extracellular factors, including Na+, organic or inorganic cations, and serine proteases. To identify the effect of the divalent Ni2+ cation on ENaCs, we compared the Na+ permeability and amiloride kinetics of Xenopus ENaCs (xENaCs) and rat ENaCs (rENaCs) heterologously expressed in Xenopus oocytes. We found that the channel cloned from the kidney of the clawed toad Xenopus laevis [wild-type (WT) xENaC] was stimulated by external Ni2+, whereas the divalent cation inhibited the channel cloned from the rat colon (WT rENaC).

View Article and Find Full Text PDF

Purpose: Intercellular Ca(2+) wave propagation is a distinct form of cell-cell communication. In corneal endothelial cells, intercellular Ca(2+) wave propagation evoked by a point mechanical stimulus (PMS) is partially mediated by adenosine triphosphate (ATP) release and subsequent activation of P2Y receptors. This study was conducted to investigate the possibility that extrajunctional connexons (hemichannels) play a role in ATP release during PMS-induced Ca(2+) wave propagation in bovine corneal endothelial cells (BCECs).

View Article and Find Full Text PDF

Adenosine is known to stimulate chloride secretion by mouse jejunum. Whereas the receptor on the basolateral side is believed to be A2B, the receptor involved in the luminal effect of adenosine has not been identified. We found that jejuna expressed mRNA for all adenosine receptor subtypes.

View Article and Find Full Text PDF

Transepithelial fluctuation analysis (noise analysis) provides valuable information about the density and single-channel properties of ion channels in intact epithelia. Here we investigate cystic fibrosis transmembrane conductance regulator (CFTR)-dependent chloride (Cl-) secretion in T84 human colonic epithelia by inducing noise using the diarylsulfonylurea DASU-01, a low-affinity open-channel blocker of CFTR. Our data indicate that the apical membrane of maximally stimulated T84 epithelia has a very high Cl- conductance generated by approximately 7000 active CFTR channels per cell with open probability (Po) of approximately 0.

View Article and Find Full Text PDF

We investigated the involvement of intracellular and extracellular Ca2+ in the stimulation of Na+ transport during hyposmotic treatment of A6 renal epithelia. A sudden osmotic decrease elicits a biphasic stimulation of Na+ transport, recorded as increase in amiloride-sensitive short-circuit current (Isc) from 3.4 +/- 0.

View Article and Find Full Text PDF

We developed a non-invasive technique for electrophysiological investigations of ion transport proteins endogenously or heterologously expressed in Xenopus laevis oocytes. We named this technique the transoocyte voltage clamp (TOVC). Whereas in the classical two-microelectrode voltage-clamp (TEVC) technique, the oocyte is impaled with two glass microelectrodes, we mount the egg in a modified Ussing chamber as used for transepithelial electrophysiological studies.

View Article and Find Full Text PDF
Article Synopsis
  • ATP is released from A6 epithelial cells in response to hypotonic conditions, and this study investigates how ATP diffuses through the supports used in cell cultures.
  • A theoretical model is developed to describe ATP diffusion behavior, which showed a significant delay in diffusion due to the permeable support.
  • The findings correlate the timing of intracellular calcium mobilization and ATP release, and the pore structure of the support influences the measured release rates, which is confirmed by experiments with different Anopore filters.
View Article and Find Full Text PDF
Article Synopsis
  • Light scattering technique measures quick cell volume changes, and this study introduces a new approach validated by cell height measurements in corneal endothelial cells.
  • Scattered light intensity (SLI) reactions to osmotic changes indicate swelling and shrinkage of cells, aligning with observed regulatory volume changes (RVD and RVI).
  • The method proves effective for monitoring cell volume fluctuations rapidly, with additional experiments showing impacts of ion conductance on SLI influenced by various substances.
View Article and Find Full Text PDF

Zn(2+) (1-1,000 microM) applied to the apical side of polarized A6 epithelia inhibits Na(+) transport, as reflected in short-circuit current and conductance measurements. The Menten equilibrium constant for Zn(2+) inhibition was 45 microM. Varying the apical Na(+) concentration, we determined the equilibrium constant of the short-circuit current saturation (34.

View Article and Find Full Text PDF

The P2Y(4) receptor is responsive to UTP in human and to ATP and UTP in rodents. With the aim of identifying its pharmacotherapeutic interest, we generated P2Y(4)-null mice by a classic gene targeting method. The proportion of genotypes was consistent with X-linked Mendelian transmission.

View Article and Find Full Text PDF

Under hypertonic conditions, solitary rat hepatocytes in primary culture shrink and subsequently exhibit a distinct regulatory volume increase (RVI). Reverse-transcribed polymerase chain reaction and 5' and 3' RACE (rapid amplification of cDNA ends) techniques reveal that these cells express phospholemman (PLM). In whole-cell recordings, the hypertonic activation of a channel is observed that resembles PLM with respect to unitary conductance (600-700 pS), gating pattern, and non-selectivity for Na(+) over K(+).

View Article and Find Full Text PDF

In renal A6 epithelia, an acute hypotonic shock evokes a transient increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) through a mechanism that is sensitive to the P2 receptor antagonist suramin, applied to the basolateral border only. This finding has been further characterized by examining ATP release across the basolateral membrane with luciferin-luciferase (LL) luminescence. Polarized epithelial monolayers, cultured on permeable supports were mounted in an Ussing-type chamber.

View Article and Find Full Text PDF

Within the framework of developing strategies to enhance the intestinal absorption of P-glycoprotein (P-gp) substrates, the modulatory effect of a standardized apricot extract on P-gp-related efflux carriers was investigated in the Caco-2 system, Ussing chambers and the rat in situ perfusion model using talinolol as a model substrate. Using the Caco-2 system, polarity in transport of talinolol could be observed, the absorptive transport being much lower than the secretory transport (P(app-abs) = 1.08 +/- 0.

View Article and Find Full Text PDF

Effects of the extract of Nigella arvensis (NA) seeds on transepithelial Na(+) transport were studied in cultured A6 toad kidney cells by recording short-circuit current (I(sc)), transepithelial conductance (G(T)), transepithelial capacitance (C(T)) and fluctuation in I(sc). Apical application of NA extract had merely a small stimulatory effect on Na(+) transport, whereas basolateral administration markedly increased I(sc), G(T) and C(T). A maximal effect was obtained at 500 microll(-1) of lyophilized NA extract.

View Article and Find Full Text PDF

In renal ischemia, tubular obstruction induced by swelling of epithelial cells might be an important mechanism for reduction of the glomerular filtration rate. We investigated ischemic cell swelling by examining volume regulation of A6 cells during metabolic inhibition (MI) induced by cyanide and 2-deoxyglucose. Changes in cell volume were monitored by recording cell thickness (T(c)).

View Article and Find Full Text PDF