Publications by authors named "Willy Werner"

In this study, the stomatal ozone (O) fluxes were investigated at five low-elevation forest sites in Western Germany (Rhineland Palatinate) over the time period 1998-2019. The Phytotoxic Ozone Dose with an hourly threshold of uptake (Y), to represent the detoxification capacity of trees (POD1 in mmol m per leaf area, with Y = 1 nmol O m s), and the number of exceedances of the O critical level of 5.2 mmol O m per leaf area for European beech and 9.

View Article and Find Full Text PDF

Drought alters carbon (C) allocation within trees, thereby impairing tree growth. Recovery of root and leaf functioning and prioritized C supply to sink tissues after drought may compensate for drought-induced reduction of assimilation and growth. It remains unclear if C allocation to sink tissues during and following drought is controlled by altered sink metabolic activities or by the availability of new assimilates.

View Article and Find Full Text PDF

The carbon and oxygen isotopic composition of water and assimilates in plants reveals valuable information on plant responses to climatic conditions. Yet, the carbon and oxygen uptake, incorporation and allocation processes determining isotopic compositions are not fully understood. We carried out a dual-isotope labeling experiment at high humidity with 18O-enriched water (H218O) and 13C-enriched CO2 (13CO2) with attached Scots pine (Pinus sylvestris L.

View Article and Find Full Text PDF

Novel tree ring parameters - δ(13)C and δ(2)H from methoxyl groups - have been developed to reconstruct palaeoclimate. Tests with δ(13)C and δ(18)O derived from whole wood and cellulose samples, however, indicated differences in the isotopic composition and climate signal, depending on the extracted wood component. We assess this signal dependency by analysing (i) δ(13)C and δ(18)O from whole wood and cellulose and (ii) δ(13)C and δ(2)H from methoxyl groups, using Pinus sylvestris L.

View Article and Find Full Text PDF

To assess whether nitrogen (N) content and δ(15)N ratios in nitrophytic lichen species (Xanthoria parietina (L.) Th. Fr.

View Article and Find Full Text PDF

To compare three biomonitoring techniques for assessing nitrogen (N) pollution in Germany, 326 lichen, 153 moss and 187 bark samples were collected from 16 sites of the national N deposition monitoring network. The analysed ranges of N content of all investigated biomonitors (0.32%-4.

View Article and Find Full Text PDF

For accurate interpretation of oxygen isotopes in tree rings (δ(18) O), it is necessary to disentangle the mechanisms underlying the variations in the tree's internal water cycle and to understand the transfer of source versus leaf water δ(18) O to phloem sugars and stem wood. We studied the seasonal transfer of oxygen isotopes from precipitation and soil water through the xylem, needles and phloem to the tree rings of Larix decidua at two alpine sites in the Lötschental (Switzerland). Weekly resolved δ(18) O records of precipitation, soil water, xylem and needle water, phloem organic matter and tree rings were developed.

View Article and Find Full Text PDF

Compared with physico-chemical deposition measurement methods, lichens are able to identify the long-term overall effects of high N pollution concentrations in the air. In addition, the natural abundances of the stable isotope of N, (15)N, are being widely used in research on N cycling in ecosystems. They can also be used as instruments for source attribution.

View Article and Find Full Text PDF

Combined δ(13) C and δ(18) O analyses of water-soluble leaf and twig phloem material were used to determine intrinsic water-use efficiency (iWUE) and variability of stomatal conductance at different crown positions in adult European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) trees. Simultaneous gas exchange measurements allowed evaluation of the differences in calculating iWUE from leaf or phloem water-soluble compounds, and comparison with a semi-quantitative dual isotope model to infer variability of net photosynthesis (A(n) ) between the investigated crown positions. Estimates of iWUE from δ(13) C of leaf water-soluble organic matter (WSOM) outperformed the estimates from phloem compounds.

View Article and Find Full Text PDF