A major challenge for diagnosing and monitoring the progression of amyloid-based diseases is the capability to distinguish between amyloid deposits that are associated with related, but distinctly different, diseases. Here, we demonstrate that aminonaphthalenyl 2-cyanoacrylate-based probes can fluorescently discriminate between different types of amyloid deposits in brain. The discriminating capability of these molecular rotors is due to the stabilization of the ground versus excited states of these probes as a function of the polarity of their microenvironment (i.
View Article and Find Full Text PDFA new family of fluorescent markers containing an Amino Naphthalenyl-2-Cyano-Acrylate (ANCA) motif has been synthesized and evaluated for its capability to associate with aggregated β-amyloid (Aβ) peptides. These fluorescent probes contain a nitrogen donor group that is connected via a naphthalene unit to an electron acceptor motif containing Water Solubilizing Groups (WSG). Chemical modifications were introduced to explore their effect on the capability of the ANCA-based probes to fluorescently label aggregated Aβ peptides.
View Article and Find Full Text PDFWe describe the design, synthesis and fluorescent profile of a family of self-calibrating dyes that provide ratiometric measurements of fluid viscosity. The design is based on covalently linking a primary fluorophore (reference) that displays a viscosity-independent fluorescence emission with a secondary fluorophore (sensor) that exhibits a viscosity-sensitive fluorescence emission. Characterization of fluorescent properties was made with separate excitation of the units and through Resonance Energy Transfer from the reference to the sensor dye.
View Article and Find Full Text PDF