Pig-to-human xenotransplantation of islet cells or of vascularized organs would offer a welcome treatment alternative for the ever-increasing number of patients with end-stage organ failure who are waiting for a suitable allograph. The main hurdle are preexisting antibodies, most of which are specific for 'Linear-B', carbohydrate epitopes terminated by the unbranched Gal-alpha(1,3)Gal disaccharide. These antibodies are responsible for the 'hyper-acute rejection' of the xenograft by complement mediated hemorrhage.
View Article and Find Full Text PDFAs Alzheimer's disease pathogenesis is associated with the formation of insoluble aggregates of amyloid beta-peptide, approaches allowing the direct, noninvasive visualization of plaque growth in vivo would be beneficial for biomedical research. Here we describe the synthesis and characterization of the near-infrared fluorescence oxazine dye AOI987, which readily penetrates the intact blood-brain barrier and binds to amyloid plaques. Using near-infrared fluorescence imaging, we demonstrated specific interaction of AOI987 with amyloid plaques in APP23 transgenic mice in vivo, as confirmed by postmortem analysis of brain slices.
View Article and Find Full Text PDFNoninvasive near-infrared fluorescence reflectance imaging (FRI) is an in vivo technique to assess physiological and molecular processes in the intact organism. Here we describe a method to assess gastric emptying in mice. TentaGel beads with covalently bound cyanine dye (Cy5.
View Article and Find Full Text PDFPreformed and elicited Ab's against the Galalpha1,3Gal terminating carbohydrate chains (alphaGal Ab's) are the primary cause of hyperacute and acute vascular xenograft rejection in pig-to-primate transplantation. alphaGal Ab's are produced by long-lived Ab-producing cells that are not susceptible to pharmacological immunosuppression. We reasoned that antigen-specific elimination of alphaGal Ab's might be achieved in vivo by systemic administration of nonimmunogenic polyvalent alphaGal structures with high avidity for alphaGal Ab's.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2001
How do retaining glycosyltransferases function? To answer this question, UDP-Gal and galactose were covalently linked to form disubstrate analogues 1, of which surprisingly 1β and not 1α inhibited α(1-3)-galactosyltransferases very well. An understanding of this inhibition is a key to the pharmacological prevention of hyperacute rejection in pig to primate xenotransplantation.
View Article and Find Full Text PDF