Oropouche fever is a re-emerging global viral threat caused by infection with Oropouche orthobunyavirus (OROV). While disease is generally self-limiting, historical and recent reports of neurologic involvement highlight the importance of understanding the neuropathogenesis of OROV. In this study, we characterize viral replication kinetics in neurons and microglia derived from immortalized, primary, and induced pluripotent stem cell-derived cells, which are all permissive to infection.
View Article and Find Full Text PDFCystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, ultimately leading to diminished transepithelial anion secretion and mucociliary clearance. CFTR correctors are therapeutics that restore the folding/trafficking of mutated CFTR to the plasma membrane. The large-conductance calcium-activated potassium channel (BKCa, KCa1.
View Article and Find Full Text PDFLocal protein synthesis in axons and dendrites underpins synaptic plasticity. However, the composition of the protein synthesis machinery in distal neuronal processes and the mechanisms for its activity-driven deployment to local translation sites remain unclear. Here, we employed cryo-electron tomography, volume electron microscopy, and live-cell imaging to identify Ribosome-Associated Vesicles (RAVs) as a dynamic platform for moving ribosomes to distal processes.
View Article and Find Full Text PDFRift Valley fever virus (RVFV) is an emerging arboviral disease with pandemic potential. While infection is often self-limiting, a subset of individuals may develop late-onset encephalitis, accounting for up to 20 % of severe cases. Importantly, individuals displaying neurologic disease have up to a 53 % case fatality rate, yet the neuropathogenesis of RVFV infection remains understudied.
View Article and Find Full Text PDFVitamin toxicity represents an increasingly frequent clinical diagnosis and can be difficult to initially recognize given the plethora of over-the-counter supplements available. The young, active, and heavily male population of the military is especially susceptible to such supplementation pitfalls. Here we present the case of acute renal failure with hypercalcemia that was found to be secondary to unrecognized high-dose over-the-counter vitamin supplementation and subsequent vitamin D hypervitaminosis initiated by the patient in the hope of boosting testosterone production.
View Article and Find Full Text PDFMutations in PTEN-induced kinase 1 (PINK1) contribute to autosomal recessive Parkinson's disease with cognitive and neuropsychiatric comorbidities. Disturbances in dendritic and spine architecture are hallmarks of neurodegenerative and neuropsychiatric conditions, but little is known of the impact of PINK1 on these structures. We used mice to study the role of endogenous PINK1 in regulating dendritic architecture, spine density, and spine maturation.
View Article and Find Full Text PDFBackground: In the face of the COVID-19 pandemic, the Defence Science and Technology Laboratory (Dstl) and Defence Pathology combined to form the Defence Clinical Lab (DCL), an accredited (ISO/IEC 17025:2017) high-throughput SARS-CoV-2 PCR screening capability for military personnel.
Laboratory Structure And Resource: The DCL was modular in organisation, with laboratory modules and supporting functions combining to provide the accredited SARS-CoV-2 (envelope (E)-gene) PCR assay. The DCL was resourced by Dstl scientists and military clinicians and biomedical scientists.
Rac1 and RhoA are among the most widely studied small GTPases. The classic dogma surrounding their biology has largely focused on their activity as an "on/off switch" of sorts. However, the advent of more sophisticated techniques, such as genetically-encoded FRET-based sensors, has afforded the ability to delineate the spatiotemporal regulation of Rac1 and RhoA.
View Article and Find Full Text PDFNormally, dendritic size is established prior to adolescence and then remains relatively constant into adulthood due to a homeostatic balance between growth and retraction pathways. However, schizophrenia is characterized by accelerated reductions of cerebral cortex gray matter volume and onset of clinical symptoms during adolescence, with reductions in layer 3 pyramidal neuron dendritic length, complexity, and spine density identified in multiple cortical regions postmortem. Nogo receptor 1 (NGR1) activation of the GTPase RhoA is a major pathway restricting dendritic growth in the cerebral cortex.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo-electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic β-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species.
View Article and Find Full Text PDFTDP-43 proteinopathy is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia where cytoplasmic TDP-43 inclusions are observed within degenerating regions of patient postmortem tissue. The mechanism by which TDP-43 aggregates has remained elusive due to technological limitations, which prevent the analysis of specific TDP-43 interactions in live cells. We present an optogenetic approach to reliably induce TDP-43 proteinopathy under spatiotemporal control.
View Article and Find Full Text PDFDysregulation of calcium homeostasis has been linked to multiple neurological diseases. In addition to excitotoxic neuronal cell death observed following stroke, a growing number of studies implicate excess excitatory neuronal activity in chronic neurodegenerative diseases. Mitochondria function to rapidly sequester large influxes of cytosolic calcium through the activity of the mitochondrial calcium uniporter (MCU) complex, followed by more gradual release via calcium antiporters, such as NCLX.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is characterized by amyloid deposition, tangle formation as well as synapse loss. Synaptic abnormalities occur early in the pathogenesis of AD. Identifying early synaptic abnormalities and their underlying mechanisms is likely important for the prevention and treatment of AD.
View Article and Find Full Text PDFMutations in leucine-rich repeat kinase 2 (LRRK2) contribute to development of late-onset familial Parkinson's disease (PD), with clinical features of motor and cognitive dysfunction indistinguishable from sporadic PD. Calcium dysregulation plays an important role in PD pathogenesis, but the mechanisms of neurodegeneration remain unclear. Recent reports indicate enhanced excitatory neurotransmission in cortical neurons expressing mutant LRRK2, which occurs before the well-characterized phenotype of dendritic shortening.
View Article and Find Full Text PDFCompelling evidence links amyloid beta (Aβ) peptide accumulation in the brains of Alzheimer's disease (AD) patients with the emergence of learning and memory deficits, yet a clear understanding of the events that drive this synaptic pathology are lacking. We present evidence that neurons exposed to Aβ are unable to form new synapses, resulting in learning deficits in vivo. We demonstrate the Nogo receptor family (NgR1-3) acts as Aβ receptors mediating an inhibition of synapse assembly, plasticity, and learning.
View Article and Find Full Text PDFObjective: Decreased density of dendritic spines in adult schizophrenia subjects has been hypothesized to result from increased pruning of excess synapses in adolescence. In vivo imaging studies have confirmed that synaptic pruning is largely driven by the loss of large or mature synapses. Thus, increased pruning throughout adolescence would likely result in a deficit of large spines in adulthood.
View Article and Find Full Text PDFPsychosis in Alzheimer's disease (AD+P) represents a distinct clinical and neurobiological AD phenotype and is associated with more rapid cognitive decline, higher rates of abnormal behaviors, and increased caregiver burden compared with AD without psychosis. On a molecular level, AD+P is associated with greater reductions in the protein kalirin, a guanine exchange factor which has also been linked to the psychotic disease, schizophrenia. In this study, we sought to determine the molecular and behavioral consequences of kalirin reduction in APPswe/PSEN1dE9 mice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2017
Working memory requires efficient excitatory drive to parvalbumin-positive (PV) interneurons in the primate dorsolateral prefrontal cortex (DLPFC). Developmental pruning eliminates superfluous excitatory inputs, suggesting that working memory maturation during adolescence requires pruning of excitatory inputs to PV interneurons. Therefore, we tested the hypothesis that excitatory synapses on PV interneurons are pruned during adolescence.
View Article and Find Full Text PDFKey Points: Increases in intracellular Zn(2+) concentrations are an early, necessary signal for the modulation of Kv2.1 K(+) channel localization and physiological function. Intracellular Zn(2+) -mediated Kv2.
View Article and Find Full Text PDFStretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations.
View Article and Find Full Text PDFKv2.1 is a major delayed rectifying K(+) channel normally localized to highly phosphorylated somatodendritic clusters in neurons. Excitatory stimuli induce calcineurin-dependent dephosphorylation and dispersal of Kv2.
View Article and Find Full Text PDFNeuronal development is characterized by a period of exuberant synaptic growth that is well studied. However, the mechanisms that restrict this process are less clear. Here we demonstrate that glycosylphosphatidylinositol-anchored cell-surface receptors of the Nogo Receptor family (NgR1, NgR2, and NgR3) restrict excitatory synapse formation.
View Article and Find Full Text PDFCyclin E is a component of the core cell cycle machinery, and it drives cell proliferation by regulating entry and progression of cells through the DNA synthesis phase. Cyclin E expression is normally restricted to proliferating cells. However, high levels of cyclin E are expressed in the adult brain.
View Article and Find Full Text PDFThe mechanisms that promote excitatory synapse formation and maturation have been extensively studied. However, the molecular events that limit excitatory synapse development so that synapses form at the right time and place and in the correct numbers are less well understood. We have identified a RhoA guanine nucleotide exchange factor, Ephexin5, which negatively regulates excitatory synapse development until EphrinB binding to the EphB receptor tyrosine kinase triggers Ephexin5 phosphorylation, ubiquitination, and degradation.
View Article and Find Full Text PDF