Angew Chem Int Ed Engl
January 2025
A method to photomodulate dynamically transient DNA-based reaction circuits and networks is introduced. The method relies on the integration of photoresponsive o-nitrobenzyl-phosphate ester-caged DNA hairpin with a "mute" reaction module. Photodeprotection (λ=365 nm) of the hairpin structure separates a fuel strand triggering the dynamic, transient, operation of the DNA circuit/network.
View Article and Find Full Text PDFPhotochemically triggered, transient, and temporally oscillatory-modulated transcription machineries are introduced. The resulting dynamic transcription circuits are implemented to guide photochemically triggered, transient, and oscillatory modulation of thrombin toward temporal control over fibrinogenesis. One system describes the assembly of a reaction module leading to the photochemically triggered formation of an active transcription machinery that, in the presence of RNase H, guides the transient activation of thrombin toward fibrinogenesis.
View Article and Find Full Text PDFThe assembly of pH-responsive DNA-based, phase-separated microdroplets (MDs) coacervates, consisting of frameworks composed of Y-shaped nucleic acid modules crosslinked by pH-responsive strands, is introduced. The phase-separated MDs reveal dynamic pH-stimulated switchable or oscillatory transient depletion and reformation. In one system, a photoisomerizable merocyanine/spiropyran photoacid is used for the light-induced pH switchable modulation of the reaction medium between the values pH=6.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Oligo-adenine (polyA) is primarily known for its critical role in mRNA stability, translational status, and gene regulation. Beyond its biological functions, extensive research has unveiled the diverse applications of polyA. In response to environmental stimuli, single polyA strands undergo distinctive structural transitions into diverse secondary configurations, which are reversible upon the introduction of appropriate counter-triggers.
View Article and Find Full Text PDFAn ortho-nitrobenzyl phosphate ester-caged nucleic acid hairpin structure coupled to the CRISPR-Cas12a complex is introduced as a functional reaction module for the light-induced activation of the CRISPR-Cas12a (LAC12a) machinery toward the amplified fluorescence detection of microRNA-21 (miRNA-21). The LAC12a machinery is applied for the selective, in vitro sensing of miRNA-21 and for the intracellular imaging of miRNA-21 in different cell lines. The LAC12a system is used to image miRNA-21 in different cell cycle phases of MCF-7 cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Self-assembled supramolecular DNA tetrahedra composed of programmed sequence-engineered complementary base-paired strands represent elusive nanostructures having key contributions to the development and diverse applications of DNA nanotechnology. By appropriate engineering of the strands, DNA tetrahedra of tuneable sizes and chemical functionalities were designed. Programmed functionalities for diverse applications were integrated into tetrahedra structures including sequence-specific recognition strands (aptamers), catalytic DNAzymes, nanoparticles, proteins, or fluorophore.
View Article and Find Full Text PDFThe primer-guided entropy-driven high-throughput evolution of the DNA-based constitutional dynamic network, CDN, is introduced. The entropy gain associated with the process provides a catalytic principle for the amplified emergence of the CDN. The concept is applied to develop a programmable, spatially localized DNA circuit for effective and theranostic, gene-regulated treatment of cancer cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
Since the discovery of the first peroxidase nanozyme (FeO), numerous nanomaterials have been reported to exhibit intrinsic enzyme-like activity toward inorganic oxygen species, such as HO, oxygen, and O . However, the exploration of nanozymes targeting organic compounds holds transformative potential in the realm of industrial synthesis. This review provides a comprehensive overview of the diverse types of nanozymes that catalyze reactions involving organic substrates and discusses their catalytic mechanisms, structure-activity relationships, and methodological paradigms for discovering new nanozymes.
View Article and Find Full Text PDFExpanding the functions and applications of DNA by integrating noncanonical bases and structures into biopolymers is a continuous scientific effort. An adenine-rich strand (A-strand) is introduced as functional scaffold revealing, in the presence of the low-molecular-weight cofactor cyanuric acid (CA, p 6.9), supramolecular hydrogel-forming efficacies demonstrating multiple pH-responsiveness.
View Article and Find Full Text PDFDNA is an ideal template for the design of nanoarchitectures with molecular-like features. Here, we present an optimized assembly strategy for the concatenation of DNA quasi-rings into long scaffolds. Ionic strength, which played a major role during self-assembly, produced the expected high quality only at 15 mM MgCl.
View Article and Find Full Text PDFA Fe-ion cross-linked carboxymethyl cellulose, Fe-CMC, redox-active gel exhibiting dissipative, transient stiffness properties is introduced. Chemical or photosensitized reduction of the higher-stiffness Fe-CMC to the lower-stiffness Fe-CMC gel, accompanied by the aerobic reoxidation of the Fe-CMC matrix, leads to the dissipative, transient stiffness, functional matrix. The light-induced, temporal, transient release of a load (Texas red dextran) and the light-triggered, transient mechanical bending of a poly--isopropylacrylamide (p-NIPAM)/Fe-CMC bilayer construct are introduced, thus demonstrating the potential use of the dissipative Fe-CMC gel for controlled drug release or soft robotic applications.
View Article and Find Full Text PDFThe photochemical deprotection of structurally engineered -nitrobenzylphosphate-caged hairpin nucleic acids is introduced as a versatile method to evolve constitutional dynamic networks, CDNs. The photogenerated CDNs, in the presence of fuel strands, interact with auxiliary CDNs, resulting in their dynamically equilibrated reconfiguration. By modification of the constituents associated with the auxiliary CDNs with glucose oxidase (GOx)/horseradish peroxidase (HRP) or the lactate dehydrogenase (LDH)/nicotinamide adenine dinucleotide (NAD) cofactor, the photogenerated CDN drives the orthogonal operation upregulated/downregulated operation of the GOx/HRP and LDH/NAD biocatalytic cascade in the conjugate mixture of auxiliary CDNs.
View Article and Find Full Text PDFThe expression of disease-specific membrane proteins (MPs) is a crucial indicator for evaluating the onset and progression of diseases. Urinalysis of in situ MPs has the potential for point-of-care disease diagnostics, yet remains challenging due to the lack of molecular reporter to transform the expression information of in situ MPs into the measurable urine composition. Herein, a series of tetrahedral DNA frameworks (TDFs) are employed as the cores of programmable atom-like nanoparticles (PANs) to direct the self-assembly of PAN reporters with defined ligand valence and spatial distribution.
View Article and Find Full Text PDFDNA frameworks, consisting of constitutional dynamic networks (CDNs) undergoing fuel-driven reconfiguration, are coupled to a dissipative reaction module that triggers the reconfigured CDNs into a transient intermediate CDNs recovering the parent CDN state. Biocatalytic cascades consisting of the glucose oxidase (GOx)/horseradish peroxidase (HRP) couple or the lactate dehydrogenase (LDH)/nicotinamide adenine dinucleotide (NAD) couple are tethered to the constituents of two different CDNs, allowing the CDNs-guided operation of the spatially confined GOx/HRP or LDH/NAD biocatalytic cascades. By applying two different fuel triggers, the directional transient CDN-guided upregulation/downregulation of the two biocatalytic cascades are demonstrated.
View Article and Find Full Text PDFThe combination of gene therapy and immunotherapy concepts, along recent advances in DNA nanotechnology, have the potential to provide important tools for cancer therapies. We present the development of stimuli-responsive microcapsules, loaded with a viral immunogenetic agent, harnessing the immune response against the Coronavirus Disease 2019, COVID-19, to selectively attack liver cancer cells (hepatoma) or recognize breast cancer or hepatoma, by expression of green fluorescence protein, GFP. The pH-responsive microcapsules, modified with DNA-tetrahedra nanostructures, increased hepatoma permeation by 50 %.
View Article and Find Full Text PDFGlucose oxidase-loaded ZIF-90 metal-organic framework nanoparticles conjugated to hemin-G-quadruplexes act as functional bioreactor hybrids operating transient dissipative biocatalytic cascaded transformations consisting of the glucose-driven HO-mediated oxidation of Amplex-Red to resorufin or the glucose-driven generation of chemiluminescence by the HO-mediated oxidation of luminol. One system involves the fueled activation of a reaction module leading to the temporal formation and depletion of the bioreactor conjugate operating the nickase-guided transient biocatalytic cascades. The second system demonstrates the fueled activation of a reaction module yielding a bioreactor conjugate operating the exonuclease III-dictated transient operation of the two biocatalytic cascades.
View Article and Find Full Text PDFEmulating native transient transcription machineries modulating temporal gene expression by synthetic circuits is a major challenge in the area of systems chemistry. Three different methods to operate transient transcription machineries and to modulate the gated transcription processes of target RNAs are introduced. One method involves the design of a reaction module consisting of transcription templates being triggered by promoter fuel strands transcribing target RNAs and in parallel generating functional DNAzymes in the transcription templates, modulating the dissipative depletion of the active templates and the transient operation of transcription circuits.
View Article and Find Full Text PDFNanozymes are inorganic, organic and metal-organic framework nanoparticles that reveal catalytic functions by emulating native enzyme activities. Recently, these nanozymes have attracted growing scientific interest, finding diverse analytical and medical applications. However, the catalytic activities and functions of nanozymes are limited, due to the lack of substrate binding sites that concentrate on the substrate at the catalytic site (molarity effect), introduce substrate specificity and allow functional complexity of the catalysts (cascaded, switchable and cooperative catalysis).
View Article and Find Full Text PDFMembrane fusion processes play key roles in biological transformations, such as endocytosis/exocytosis, signal transduction, neurotransmission, or viral infections, and substantial research efforts have been directed to emulate these functions by artificial means. The recognition and dynamic reconfiguration properties of nucleic acids provide a versatile means to induce membrane fusion. Here we address recent advances in the functionalization of liposomes or membranes with structurally engineered lipidated nucleic acids guiding the fusion of cell-like containments, and the biophysical and chemical parameters controlling the fusion of the liposomes will be discussed.
View Article and Find Full Text PDFThe assembly of enzyme [glucose oxidase (GOx)]-loaded stimuli-responsive DNA-based hydrogels on electrode surfaces, and the triggered control over the stiffness of the hydrogels, provides a means to switch the bioelectrocatalytic functions of the hydrogels. One system includes the assembly of GOx-loaded, pH-responsive, hydrogel matrices cross-linked by two cooperative nucleic acid motives comprising permanent duplex nucleic acids and "caged" i-motif pH-responsive duplexes. Bioelectrocatalyzed oxidation of glucose leads to the formation of gluconic acid that acidifies the hydrogel resulting in the separation of the i-motif constituents and lowering the hydrogel stiffness.
View Article and Find Full Text PDFNative G-quadruplex-regulated temporal biocatalytic circuits, gene polymerization, and transcription processes are emulated by biomimetic, synthetically engineered transcription machineries coupled to reconfigurable G-quadruplex nanostructures. These are addressed by the following example: (i) A reaction module demonstrates the fuel-triggered transcription machinery-guided transient synthesis of G-quadruplex nanostructures. (ii) A dynamically triggered and modulated transcription machinery that guides the temporal separation and reassembly of the anti-thrombin G-quadruplex aptamer/thrombin complex is introduced, and the transient thrombin-catalyzed coagulation of fibrinogen is demonstrated.
View Article and Find Full Text PDFConjugation of aptamers to homogeneous catalysts ("nucleoapzymes"), heterogeneous nanoparticle catalysts ("aptananozymes"), and photocatalysts ("photoaptazymes") yields superior catalytic/photocatalytic hybrid nanostructures emulating functions of native enzymes and photosystems. The concentration of the substrate in proximity to the catalytic sites ("molarity effect") or spatial concentration of electron-acceptor units in spatial proximity to the photosensitizers, by aptamer-ligand complexes, leads to enhanced catalytic/photocatalytic efficacies of the hybrid nanostructures. This is exemplified by sets of "nucleoapzymes" composed of aptamers conjugated to the hemin/G-quadruplex DNAzymes or metal-ligand complexes as catalysts, catalyzing the oxidation of dopamine to aminochrome, oxygen-insertion into the Ar─H moiety of tyrosinamide and the subsequent oxidation of the catechol product into aminochrome, or the hydrolysis of esters or ATP.
View Article and Find Full Text PDFThis review article introduces mechanistic aspects and applications of photochemically deprotected -nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced.
View Article and Find Full Text PDFCytochrome c (Cyt. c) is a key initiator of the caspases that activate cell apoptosis. The spatiotemporal evaluation of the contents of Cyt.
View Article and Find Full Text PDF