Publications by authors named "Willner A"

We experimentally demonstrate a 10-Gbit/s free-space communication link using a single Laguerre-Gaussian (LG) beam with tunable radial and azimuthal modal indices generated by a photonic integrated circuit comprising two concentric uniform circular antenna arrays (UCAs). To tune the azimuthal modal indices ℓ of the generated beam, the azimuthal phase gradient inside each UCA is tuned. To tune the radial mode p of the generated beam, the amplitude ratio and phase difference between the two concentric UCA are tuned.

View Article and Find Full Text PDF

In general, space-time wave packets with correlations between transverse spatial fields and temporal frequency spectra can lead to unique spatiotemporal dynamics, thus enabling control of the instantaneous light properties. However, spatiotemporal dynamics generated in previous approaches manifest themselves at a given propagation distance yet are not arbitrarily tailored longitudinally. Here, we propose and demonstrate a new versatile class of judiciously synthesized wave packets whose spatiotemporal evolution can be arbitrarily engineered to take place at various predesigned distances along the longitudinal propagation path.

View Article and Find Full Text PDF
Article Synopsis
  • Performing pattern recognition in the optical domain can offer benefits like high-speed operation and the ability to adjust and scale based on optical wave properties.
  • This study combines optical correlation with optical biasing to achieve efficient QPSK pattern recognition using direct detection, eliminating the need for complex coherent detection.
  • The experimental results show successful error-free recognition of multiple QPSK patterns over 3072 symbols at different baud rates, indicating effective performance with specific power thresholding values.
View Article and Find Full Text PDF

Compared to its electronic counterpart, optically performed matrix convolution can accommodate phase-encoded data at high rates while avoiding optical-to-electronic-to-optical (OEO) conversions. We experimentally demonstrate a reconfigurable matrix convolution of quadrature phase-shift keying (QPSK)-encoded input data. The two-dimensional (2-D) input data is serialized, and its time-shifted replicas are generated.

View Article and Find Full Text PDF

In this paper, we experimentally demonstrate an 8-Gbit/s quadrature-phase-shift-keying (QPSK) coherent underwater wireless optical communication (UWOC) link under scattering conditions at 532 nm. At the transmitter, we generate the 532-nm QPSK signal using second-harmonic generation (SHG), where the 1064-nm signal modulated with four phase levels of an 8-phase-shift-keying (8-PSK) format is phase doubled to produce the 532-nm QPSK signal. To enhance the receiver sensitivity, we utilize a local oscillator (LO) at the receiver from an independent laser source.

View Article and Find Full Text PDF

The utilization of two-component systems comprising camphorquinone (CQ) and aromatic amines has become prevalent in the photopolymerization. However, there are still concerns about the safety of this CQ/amine system, mainly because of the toxicity associated with the leaching of aromatic amines. In light of these concerns, this study aims to develop novel coinitiator combinations featuring CQ and amines which cannot be leached out of materials, enabling free radical polymerization of representative dentalmethacrylate resins under blue light irradiation.

View Article and Find Full Text PDF

In this Letter, we demonstrate turbulence mitigation of four mode-division-multiplexing (MDM) quadrature-phase-shift-keying (QPSK) channels in a pilot-assisted self-coherent free-space optical (FSO) link using a photodetector (PD) array and digital signal processing (DSP)-based channel demultiplexing. A Gaussian pilot beam is co-transmitted with four 1-Gbaud QPSK channels carried by four orbital angular momentum (OAM) modes. The pilot beam experiences similar turbulence-induced wavefront distortion to the data beams.

View Article and Find Full Text PDF

In general, atmospheric turbulence can degrade the performance of free-space optical (FSO) communication systems by coupling light from one spatial mode to other modes. In this Letter, we experimentally demonstrate a 400 Gbit/s quadrature-phase-shift-keyed (QPSK) FSO mode-division-multiplexing (MDM) coherent communication link through emulated turbulence using four Laguerre Gaussian (LG) modes with different radial and azimuthal indices ( , , , and ). To mitigate turbulence-induced channel cross talk and power loss, we implement an adaptive optics (AO) system at the receiver end.

View Article and Find Full Text PDF

Previously, space-time wave packets (STWPs) have been generated in free space with reduced diffraction and a tunable group velocity by combining multiple frequency comb lines each carrying a single Bessel mode with a unique wave number. It might be potentially desirable to propagate the STWP through fiber for reconfigurable positioning. However, fiber mode coupling might degrade the output STWP and distort its propagation characteristics.

View Article and Find Full Text PDF

Background: Early postoperative mobilization is considered a key element of enhanced recovery after surgery protocols. The aim of this study was to summarize the effect of early postoperative mobilization following gastrointestinal operations on patient recovery, mobility, the morbidity rate and duration of hospital stay.

Methods: A systematic literature search was conducted in December, 2022, using PubMed, Web of Science and the Cochrane Central Register of Controlled Trials.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers successfully demonstrate an optically-assisted method for averaging two 4-phase-encoded data streams at high rates of 10 and 20-Gbaud, resulting in a 7-phase-encoded output.
  • * The process involves three key stages: phase encoding with an optical modulator, summation using nonlinear fiber, and multicast through a lithium niobate waveguide, with the final output showing increased error vector magnitudes and optical signal-to-noise ratio penalties.
View Article and Find Full Text PDF

Introduction: Neoadjuvant chemotherapy and radiotherapy for the management of soft tissue sarcomas (STS) are still preferably delivered sequentially, with or without concurrent hyperthermia. Concurrent delivery of chemo-, radio- and thermotherapy may produce synergistic effects and reduce chemotherapy-free intervals. The few available studies suggest that concurrent chemoradiation (CRT) has a greater local effect.

View Article and Find Full Text PDF

Atmospheric turbulence can cause critical problems in many applications. To effectively avoid or mitigate turbulence, knowledge of turbulence strength at various distances could be of immense value. Due to light-matter interaction, optical beams can probe longitudinal turbulence changes.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents an experimental demonstration of an optics-based half-adder that processes two channels of 4-phase-shift-keying (4-PSK) data using nonlinear wave mixing technology.
  • The system takes two sets of 4-ary phase-encoded inputs and produces corresponding outputs labeled as Sum and Carry through a nonlinear device, showcasing multiple phase levels for both inputs and outputs.
  • Experimental findings indicate that the half-adder achieves specific conversion efficiencies for data outputs, with low optical signal-to-noise ratio penalties at varying symbol rates, confirming its effectiveness in high-speed optical communication.
View Article and Find Full Text PDF
Article Synopsis
  • Space-time (ST) wave packets, which exhibit dynamic optical properties, can be created by synthesizing multiple frequency comb lines with complex spatial modes that adapt orbital angular momentum (OAM) values.
  • The study explores how changing the number of frequency comb lines and the spatial mode combinations affects the tunability of these ST wave packets, achieving OAM values from +1 to +6 in a short time frame.
  • Simulation results indicate that using more frequency lines can lead to narrower pulse widths for the ST wave packets, and variations in OAM values can create distinct frequency chirps at different times.
View Article and Find Full Text PDF

We experimentally demonstrate a 4-Gbit/s 16-QAM pilot-assisted, self-coherent, and turbulence-resilient free-space optical link using a photodetector (PD) array. The turbulence resilience is enabled by the efficient optoelectronic mixing of the data and pilot beams in a free-space-coupled receiver, which can automatically compensate for turbulence-induced modal coupling to recover the data's amplitude and phase. For this approach, a sufficient PD area might be needed to collect the beams while the bandwidth of a single larger PD could be limited.

View Article and Find Full Text PDF

There are various performance advantages when using temporal phase-based data encoding and coherent detection with a local oscillator (LO) in free-space optical (FSO) links. However, atmospheric turbulence can cause power coupling from the Gaussian mode of the data beam to higher-order modes, resulting in significantly degraded mixing efficiency between the data beam and a Gaussian LO. Photorefractive crystal-based self-pumped phase conjugation has been previously demonstrated to "automatically" mitigate turbulence with limited-rate free-space-coupled data modulation (e.

View Article and Find Full Text PDF

There is growing interest in using multiple multiplexed orthogonal orbital angular momentum (OAM) beams to increase the data capacity of communication systems in different frequency ranges. To help enable future deployment of OAM-based communications, an ecosystem of compact and cost-effective OAM generators and detectors is likely to play an important role. Desired features of such integrated circuits include generating and detecting multiple coaxial OAM beams, tunability of OAM orders, and operation over a wide bandwidth.

View Article and Find Full Text PDF
Article Synopsis
  • * The study presents a scheme, ISAC-OF, which uses the same wavelength for data transmission and vibration sensing, leading to improved transmission performance and enhanced functionality of optical communication systems.
  • * Experimental results indicate significant performance improvements, including a 1.3 dB increase in transmission efficiency and better strain and frequency response for sensing applications, opening new possibilities for optimizing fibre-optic networks.
View Article and Find Full Text PDF
Article Synopsis
  • Optical interconnects are emerging as a solution to improve data transfer limits in high-performance silicon chips, focusing on enhancing optical communication through wavelength-division multiplexing.
  • The study presents an integrated communication scheme that combines wavelength- and mode-multiplexing, achieving a significant 1.12-Tb/s data transmission without errors in a silicon nanophotonic waveguide.
  • Additionally, the approach employs inverse-designed couplers for efficient multimode optical transmission between different silicon chips, while ensuring compliance with standard silicon photonic foundry processes, making it scalable beyond current technologies.
View Article and Find Full Text PDF
Article Synopsis
  • Space-time wave packets exhibit unique propagation characteristics, including invariance and adjustable group velocity, while having the potential to carry orbital angular momentum (OAM).
  • Through experiments and simulations, researchers generate OAM-carrying ST wave packets with a time-dependent beam radius by combining multiple Laguerre-Gaussian modes with the same azimuthal index.
  • Results show that increasing the number of modes and frequency lines enhances the dynamic range of the beam radius oscillations, with high OAM purity achieved in both simulated (over 95%) and experimental (over 64%) settings, despite purity decreasing over propagation distance.
View Article and Find Full Text PDF

Due to its absorption properties in atmosphere, the mid-infrared (mid-IR) region has gained interest for its potential to provide high data capacity in free-space optical (FSO) communications. Here, we experimentally demonstrate wavelength-division-multiplexing (WDM) and mode-division-multiplexing (MDM) in a ~0.5 m mid-IR FSO link.

View Article and Find Full Text PDF

Structured electromagnetic (EM) waves have been explored in various frequency regimes to enhance the capacity of communication systems by multiplexing multiple co-propagating beams with mutually orthogonal spatial modal structures (i.e., mode-division multiplexing).

View Article and Find Full Text PDF