Past work has considered the analytic properties of the reflection coefficient for a metal-backed slab. The primary result established a fundamental relationship for the minimal layer thickness to bandwidth ratio achievable for an absorber. There has yet to be establishment of a similar relationship for non-metal-backed layers, and here we present the universal result based on the Kramers-Kronig relations.
View Article and Find Full Text PDFWe demonstrate transfer learning as a tool to improve the efficacy of training deep learning models based on residual neural networks (ResNets). Specifically, we examine its use for study of multi-scale electrically large metasurface arrays under open boundary conditions in electromagnetic metamaterials. Our aim is to assess the efficiency of transfer learning across a range of problem domains that vary in their resemblance to the original base problem for which the ResNet model was initially trained.
View Article and Find Full Text PDFEmerging reconfigurable metasurfaces offer various possibilities for programmatically manipulating electromagnetic waves across spatial, spectral, and temporal domains, showcasing great potential for enhancing terahertz applications. However, they are hindered by limited tunability, particularly evident in relatively small phase tuning over 270°, due to the design constraints with time-intensive forward design methodologies. Here, a multi-bit programmable metasurface is demonstrated capable of terahertz beam steering facilitated by a developed physics-informed inverse design (PIID) approach.
View Article and Find Full Text PDFMetamaterials enable subwavelength tailoring of light-matter interactions, driving fundamental discoveries which fuel novel applications in areas ranging from compressed sensing to quantum engineering. Importantly, the metallic and dielectric resonators from which static metamaterials are comprised present an open architecture amenable to materials integration. Thus, incorporating responsive materials such as semiconductors, liquid crystals, phase-change materials, or quantum materials (e.
View Article and Find Full Text PDFIn this work we investigate the use of deep inverse models (DIMs) for designing artificial electromagnetic materials (AEMs) - such as metamaterials, photonic crystals, and plasmonics - to achieve some desired scattering properties (, transmission or reflection spectrum). DIMs are deep neural networks (, deep learning models) that are specially-designed to solve ill-posed inverse problems. There has recently been tremendous growth in the use of DIMs for solving AEM design problems however there has been little comparison of these approaches to examine their absolute and relative performance capabilities.
View Article and Find Full Text PDFThe unidirectional scattering of electromagnetic waves in the backward and forward direction, termed Kerkers' first and second conditions, respectively, is a prominent feature of sub-wavelength particles, which also has been found recently in all-dielectric metasurfaces. Here we formulate the exact polarizability requirements necessary to achieve both Kerker conditions simultaneously with dipole terms only and demonstrate its equivalence to so-called "invisible metasurfaces". We further describe the perfect absorption mechanism in all-dielectric metasurfaces through development of an extended Kerker formalism.
View Article and Find Full Text PDFAll-dielectric metasurfaces exhibit exotic electromagnetic responses, similar to those obtained with metal-based metamaterials. Research in all-dielectric metasurfaces currently uses relatively simple unit-cell designs, but increased geometrical complexity may yield even greater scattering states. Although machine learning has recently been applied to the design of metasurfaces with impressive results, the much more challenging task of finding a geometry that yields a desired spectra remains largely unsolved.
View Article and Find Full Text PDFEmerging photonic functionalities are mostly governed by the fundamental principle of Lorentz reciprocity. Lifting the constraints imposed by this principle could circumvent deleterious effects that limit the performance of photonic systems. Most efforts to date have been limited to waveguide platforms.
View Article and Find Full Text PDFDeep learning has risen to the forefront of many fields in recent years, overcoming challenges previously considered intractable with conventional means. Materials discovery and optimization is one such field, but significant challenges remain, including the requirement of large labeled datasets and one-to-many mapping that arises in solving the inverse problem. Here we demonstrate modeling of complex all-dielectric metasurface systems with deep neural networks, using both the metasurface geometry and knowledge of the underlying physics as inputs.
View Article and Find Full Text PDFArrays of dielectric cylinders support two fundamental dipole active eigenmodes, which can be manipulated to elicit a variety of electromagnetic responses in all-dielectric metamaterials. Dissipation is a critical parameter in determining functionality; the present work varies material loss to explore the rich electromagnetic response of this class of metasurface. Four experimental cases are investigated which span electromagnetic response ranging from Huygens surfaces with transmissivity T = 94%, and phase ϕS = 235°, to metasurfaces which absorb 99.
View Article and Find Full Text PDFDiffractive optics has long served as the basis of spectroscopic measurements of materials. Operation in the resonance domain further allows these elements to achieve high efficiency and polarization control. An effective grating theory is a practical tool for modeling such optics, and here we extend use of this theory to the terahertz region, experimentally demonstrating an all-dielectric binary off-axis diffractive lens.
View Article and Find Full Text PDFConventional dielectric metasurfaces achieve their properties through geometrical tuning and consequently are static. Although some unique properties are demonstrated, the usefulness for realistic applications is thus inherently limited. Here, control of the resonant eigenmodes supported by Huygens' metasurface (HMS) absorbers through optical excitation is proposed and demonstrated.
View Article and Find Full Text PDFThe next generation of infrared imaging systems requires control of fundamental electromagnetic processes - absorption, polarization, spectral bandwidth - at the pixel level to acquire desirable information about the environment with low system latency. Metamaterial absorbers have sparked interest in the infrared imaging community for their ability to enhance absorption of incoming radiation with color, polarization and/or phase information. However, most metamaterial-based sensors fail to focus incoming radiation into the active region of a ultra-thin detecting element, thus achieving poor detection metrics.
View Article and Find Full Text PDFWe develop the theory of all-dielectric absorbers based on temporal coupled mode theory (TCMT), with parameters extracted from eigenfrequency simulations. An infinite square array of cylindrical resonators embedded in air is investigated, and we find that it supports two eigenmodes of opposite symmetry that are each responsible for half of the total absorption. The even and odd eigenmodes are found to be the hybrid electric (EH) and hybrid magnetic (HE) waveguide modes of a dielectric wire of circular cross section, respectively.
View Article and Find Full Text PDFThe far infrared region of the electromagnetic spectrum often necessitates the use of thermal detectors that, by nature, typically have poor response times and diminished sensitivities, at least compared to adjacent bands. However, many signals of interest contain frequency components far too fast to be reliably measured with such detectors, and hence expensive and inefficient alternatives are brought to bear. Here we propose and experimentally validate a new method leveraging the speed and scalability of dynamic metamaterial modulators to encode high-frequency signal components at a lower frequency, making them reliably measurable with thermal detectors that would otherwise be too slow.
View Article and Find Full Text PDFHigh-resolution and hyperspectral imaging has long been a goal for multi-dimensional data fusion sensing applications - of interest for autonomous vehicles and environmental monitoring. In the long wave infrared regime this quest has been impeded by size, weight, power, and cost issues, especially as focal-plane array detector sizes increase. Here we propose and experimentally demonstrated a new approach based on a metamaterial graphene spatial light modulator (GSLM) for infrared single pixel imaging.
View Article and Find Full Text PDFThe realization of high-performance tunable absorbers for terahertz frequencies is crucial for advancing applications such as single-pixel imaging and spectroscopy. Based on the strong position sensitivity of metamaterials' electromagnetic response, we combine meta-atoms that support strongly localized modes with suspended flat membranes that can be driven electrostatically. This design maximizes the tunability range for small mechanical displacements of the membranes.
View Article and Find Full Text PDFWe proposed and demonstrated a new metamaterial architecture capable of high speed modulation of free-space space thermal infrared radiation using graphene. Our design completely eliminates channel resistance, thereby maximizing the electrostatic modulation speed, while at the same time effectively modulating infrared radiation. Experiment results verify that our device with area of 100 × 120 µm can achieve a modulation speed as high as 2.
View Article and Find Full Text PDFMetamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.
View Article and Find Full Text PDFMeta-liquid crystals, a novel form of tunable 3D metamaterials, are proposed and experimentally demonstrated in the terahertz frequency regime. A morphology change under a bias electric field and a strong modulation of the transmission are observed. In comparison to conventional liquid crystals, there is considerable freedom to prescribe the electromagnetic properties through the judicious design of the meta-atom geometry.
View Article and Find Full Text PDFAn infrared artificial thermochromic material composed of a metamaterial emitter and a bimaterial micro-electro-mechanical system is investigated. A differential emissivity of over 30% is achieved between 623 K and room temperature. The passive metamaterial device demonstrates the ability to independently control the peak wavelength and temperature dependence of the emissivity, and achieves thermal emission following a super Stefan-Boltzmann power curve.
View Article and Find Full Text PDFWe present a single pixel terahertz (THz) imaging technique using optical photoexcitation of semiconductors to dynamically and spatially control the electromagnetic properties of a semiconductor mask to collectively form a THz spatial light modulator (SLM). By co-propagating a THz and collimated optical laser beam through a high-resistivity silicon wafer, we are able to modify the THz transmission in real-time. By further encoding a spatial pattern on the optical beam with a digital micro-mirror device (DMD), we may write masks for THz radiation.
View Article and Find Full Text PDF