Publications by authors named "Willie E Rochefort"

In this tutorial mini-review, we explore the application of Design of Experiments (DOE) as a powerful statistical tool in biotechnology. Specifically, we review the optimization of hydrogel materials for diverse microbial applications related to green microbiology, the use of microbes to promote sustainability. Hydrogels, three-dimensional polymers networks with high water retention capabilities, are pivotal in the immobilization of microorganisms and provide a customizable environment essential for directing microbial fate.

View Article and Find Full Text PDF

Chlorinated aliphatic hydrocarbons (CAHs), such as -1,2-dichloroethylene (DCE), are prevalent in groundwater at many locations throughout the United States. When immobilized in hydrogel beads with slow-release compounds, the bacteria strain ATCC 21198 can be used for the bioremediation of DCE. These hydrogel beads must exhibit high mechanical strength and resist degradation to extend the lifetime of slow-release compounds and bioremediation.

View Article and Find Full Text PDF

Cervical cancer is the second leading cause of cancer-related death in women under 40 and is one of the few cancers to have an increased incidence rate and decreased survival rate over the last 10 years. One in five patients will have recurrent and/or distant metastatic disease and these patients face a 5-year survival rate of less than 17%. Thus, there is a pressing need to develop new anticancer therapeutics for this underserved patient population.

View Article and Find Full Text PDF

The development of novel imaging techniques of molecular and colloidal transport, including nanoparticles, is an area of active investigation in microfluidic and millifluidic studies. With the advent of three-dimensional (3D) printing, a new domain of materials has emerged, thereby increasing the demand for novel polymers. Specifically, polymeric powders, with average particle sizes on the order of a micron, are experiencing a growing interest from academic and industrial communities.

View Article and Find Full Text PDF

The wound healing process includes filling the void between implant and tissue edges by collagenous connective repair tissue. This fibrous repair tissue may load share or stabilize implants such as spinal disc replacements. The objective of this study was the biomechanical characterization of human fibrous tissue compared to annulus fibrosus and nucleus pulposus.

View Article and Find Full Text PDF

Hydrogels have been proposed as candidates for nucleus pulposus replacement because of their similarity in mechanical behavior to the native tissue when subjected to transient or static loading; however, given the viscoelastic nature of soft biological tissues, the lack of dynamic testing is a significant inadequacy in the studies performed to date. In the present work, the viscoelastic behavior of a hydrogel system obtained via photopolymerization of glycidyl methacrylate modified poly(vinyl alcohol) (PVA) was evaluated in comparison to that of the nucleus pulposus when subjected to dynamic torsional shear. The complex shear moduli and phase shift angles were modulated through the variation of PVA molecular weight and concentration of polymer prior to photopolymerization.

View Article and Find Full Text PDF