Publications by authors named "Willian Zambuzzi"

Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.

View Article and Find Full Text PDF
Article Synopsis
  • Women with gestational diabetes mellitus are at increased risk for Gestational Diabetes Induced Myopathy (GDiM), leading to muscle atrophy and urinary incontinence.
  • The study developed a natural rubber latex (NRL) based biodevice infused with mesenchymal/stromal stem cells (MSCs) to aid in skeletal muscle regeneration.
  • The NRL showed promising properties such as biocompatibility, low hemolytic activity, and strong antioxidant activity, indicating its potential as a treatment for GDiM-related muscle issues.
View Article and Find Full Text PDF

In light of the complex origins of ectopic vascular calcification and its significant health implications, this study offers a comprehensive exploration of the molecular dynamics governing vascular smooth muscle cells (VSMCs). Focusing on epigenetic modulation, we investigate the transition from a contractile to a calcifying phenotype in VSMCs, with an emphasis on understanding the role of SIRT1. For this purpose, a single batch of human aortic SMCs, used at a specified passage number to maintain consistency, was subjected to calcium and phosphate overload for up to 72 h.

View Article and Find Full Text PDF

Introduction: Zirconia (ZrO) is highly regarded in dental restoration due to its aesthetic compatibility and mechanical properties that align with biological tissues. This study explores the effects of stabilized ZrO2 on endothelial cell function and extracellular matrix (ECM) remodeling, processes critical to successful osseointegration in dental implants.

Methodology: Human Umbilical Vein Endothelial Cells (HUVECs) were cultured in ZrO -enriched medium under both static and shear stress conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of microRNA-140 in regulating inflammation within osteoarthritis by analyzing extracellular vesicles (EVs) derived from equine stem cells in different culture environments.
  • *The methodology involved culturing stem cells in both 2D and 3D settings under inflammatory conditions, isolating and characterizing the EVs, and measuring microRNA-140 expression at various time points.
  • *Results show that cells in 3D culture produced more microRNA-140 and higher concentrations of EVs in response to inflammation compared to 2D cultures, suggesting that 3D environments enhance cellular responses to inflammatory stimuli.
View Article and Find Full Text PDF

Blood vessel growth and osteogenesis in the skeletal system are coupled; however, fundamental aspects of vascular function in osteoblast-to-osteocyte transition remain unclear. Our study demonstrates that vascular smooth muscle cells (VSMCs), but not endothelial cells, are sufficient to drive bone marrow mesenchymal stromal cell-derived osteoblast-to-osteocyte transition via β-catenin signaling and exosome-mediated communication. We found that VSMC-derived exosomes are loaded with transcripts encoding proteins associated with the osteocyte phenotype and members of the WNT/β-catenin signaling pathway.

View Article and Find Full Text PDF

Considering the importance of alternative methodologies to animal experimentation, we propose an organoid-based biological model for in vitro blood vessel generation, achieved through co-culturing endothelial and vascular smooth muscle cells (VSMCs). Initially, the organoids underwent comprehensive characterization, revealing VSMCs (α-SMA + cells) at the periphery and endothelial cells (CD31 cells) at the core. Additionally, ephrin B2 and ephrin B4, genes implicated in arterial and venous formation respectively, were used to validate the obtained organoid.

View Article and Find Full Text PDF

During the morphological changes occurring in osteoblast differentiation, Sonic hedgehog (Shh) plays a crucial role. While some progress has been made in understanding this process, the epigenetic mechanisms governing the expression of Hh signaling members in response to bone morphogenetic protein 7 (BMP7) signaling in osteoblasts remain poorly understood. To delve deeper into this issue, we treated pre-osteoblasts (pObs) with 100 ng/mL of BMP7 for up to 21 days.

View Article and Find Full Text PDF

This study evaluates the effects of a green tea (Camellia sinensis) and hyaluronic acid gel on fibroblast activity and alveolar bone repair following third molar extractions. By examining the gene expression related to cell survival, proliferation, and angiogenesis, the study bridges in vitro findings with clinical outcomes in a split-mouth randomized trial. Human fibroblasts were exposed to the treatment gel, analysing gene expression through RT-qPCR.

View Article and Find Full Text PDF

Epigenetic changes, particularly histone compaction modifications, have emerged as critical regulators in the epigenetic pathway driving endothelial cell phenotype under constant exposure to laminar forces induced by blood flow. However, the underlying epigenetic mechanisms governing endothelial cell behavior in this context remain poorly understood. To address this knowledge gap, we conducted in vitro experiments using human umbilical vein endothelial cells subjected to various tensional forces simulating pathophysiological blood flow shear stress conditions, ranging from normotensive to hypertensive forces.

View Article and Find Full Text PDF

Advances in methodologies to evaluate biomaterials brought an explosive growth of data, ensuing computational challenges to better analyzing them and allowing for high-throughput profiling of biological systems cost-efficiently. In this sense, we have applied bioinformatics tools to better understand the biological effect of different sintering temperatures of hydroxyapatite (abbreviated HA; at 1100, 1150, and 1250°C) on osteoblast performance. To do, we have better analyzed an earlier deposited study, in which the access code is E-MTAB-7219, which the authors have explored different in silico tools on this purpose.

View Article and Find Full Text PDF

Given the importance of the endothelial cell phenotype in dental peri-implant healing processes, the aim of this study was to better assess the involvement of endothelial cells responding to cobalt-chromium (CoCr)-enriched medium. Biologically, cobalt is widely used molecule to induce chemical experimental hypoxia because it stabilizes hypoxia inducible factors (HIF1α). The aplication of hypoxia models provides better experimental condition to allow its impact on cellular metabolism, by looking for biochemical and molecular issues.

View Article and Find Full Text PDF

Background: The growing use of zirconia as a ceramic material in dentistry is attributed to its biocompatibility, mechanical properties, esthetic appearance, and reduced bacterial adhesion. These favorable properties make ceramic materials a viable alternative to commonly used titanium alloys. Mimicking the physiological properties of blood flow, particularly the mechanosignaling in endothelial cells (ECs), is crucial for enhancing our understanding of their role in the response to zirconia exposure.

View Article and Find Full Text PDF

Background: Here, we evaluated whether the histone lysine demethylase 5B (JARID1B), is involved in osteogenic phenotype commitment of periodontal ligament cells (PDLCs), by considering their heterogeneity for osteoblast differentiation.

Materials And Methods: Epigenetic, transcriptional, and protein levels of a gene set, involved in the osteogenesis, were investigated by performing genome-wide DNA (hydroxy)methylation, mRNA expression, and western blotting analysis at basal (without osteogenic induction), and at the 3rd and 10th days of osteogenic stimulus, in vitro, using PDLCs with low (l) and high (h) osteogenic potential as biological models.

Results: h-PDLCs showed reduced levels of JARID1B, compared to l-PDLCs, with significant inversely proportional correlations between RUNX2 and RUNX2/p57.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Propolis is a bee product used in folk medicine to treat inflammatory diseases. Diverse types of propolis are produced worldwide depending on the local flora. Recently, research has been focused on a propolis sample produced in the northeast Brazilian "caatinga" from Mimosa tenuiflora, popularly known as "jurema-preta".

View Article and Find Full Text PDF

Since Branemark's findings, titanium-based alloys have been widely used in implantology. However, their success in dental implants is not known when considering the heterogenicity of housing cells surrounding the peri-implant microenvironment. Additionally, they are expected to recapitulate the physiological coupling between endothelial cells and osteoblasts during appositional bone growth during osseointegration.

View Article and Find Full Text PDF

Cobalt-doped monetite powders were synthesized by coprecipitation method under a cobalt nominal content between 2 and 20 mol % of total cation. Structural characterization of samples was performed by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. XRD results indicated that the Co-doped samples exhibited a monetite single-phase with the cell parameters and crystallite size dependent on the amount of substitutional element incorporated into the triclinic crystalline structure.

View Article and Find Full Text PDF

Cysteine proteases orchestrate bone remodeling, and are inhibited by cystatins. In reinforcing our hypothesis that exogenous and naturally obtained inhibitors of cysteine proteases (cystatins) act on bone remodeling, we decided to challenge osteoblasts with sugarcane-derived cystatin (CaneCPI-5) for up to 7 days. To this end, we investigated molecular issues related to the decisive, preliminary stages of osteoblast biology, such as adhesion, migration, proliferation, and differentiation.

View Article and Find Full Text PDF

Aim: The success of dental implants depends on osseointegration can be compromised by well-known related adverse biological processes, such as infection and diabetes. Previously, nanohydroxyapatite-coated titanium surfaces (nHA_DAE) have been shown to contain properties that promote osteogenesis by enhancing osteoblast differentiation. In addition, it was hypothesized to drive angiogenesis in high-glucose microenvironments, mimicking diabetes mellitus (DM).

View Article and Find Full Text PDF

Purpose: Obesity has increased around the world. Obese individuals need to be better assisted, with special attention given to dental and medical specialties. Among obesity-related complications, the osseointegration of dental implants has raised concerns.

View Article and Find Full Text PDF

It is important to understand whether endothelial cells are epigenetically affected by titanium-enriched media when angiogenesis is required during bone development and it is expected to be recapitulated during osseointegration of biomaterials. To better address this issue, titanium-enriched medium was obtained from incubation of titanium discs for up to 24 h as recommended by ISO 10993-5:2016, and further used to expose human umbilical vein endothelial cells (HUVECs) for up to 72 h, when the samples were properly harvested to allow molecular analysis and epigenetics. In general, our data show an important repertoire of epigenetic players in endothelial cells responding to titanium, reinforcing protein related to the metabolism of acetyl and methyl groups, as follows: Histone deacetylases (HDACs) and NAD-dependent deacetylase sirtuin-1 (Sirt1), DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) methylcytosine dioxygenases, which in conjunction culminate in driving chromatin condensation and the methylation profile of DNA strands, respectively.

View Article and Find Full Text PDF

Cobalt-chromium (Co-Cr)-based alloys are emerging with important characteristics for use in dentistry, but the knowledge of epigenetic mechanisms in endothelial cells has barely been achieved. In order to address this issue, we have prepared a previously Co-Cr-enriched medium to further treat endothelial cells (HUVEC) for up to 72 h. Our data show there is important involvement with epigenetic machinery.

View Article and Find Full Text PDF

It is known that cellular events underlying the processes of bone maintenance, remodeling, and repair have their basis in the embryonic production of bone. Shh signaling is widely described developing important morphogenetic control in bone by modifying the activity of osteoblast. Furthermore, identifying whether it is associated with the modulation of nuclear control is very important to be the basis for further applications.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a chronic metabolic disease, mainly characterized by increased blood glucose and insulin dysfunction. In response to the persistent systemic hyperglycemic state, numerous metabolic and physiological complications have already been well characterized. However, its relationship to bone fragility, cognitive deficits and increased risk of dementia still needs to be better understood.

View Article and Find Full Text PDF

Ti and its alloys are the most used metallic biomaterials devices due to their excellent combination of chemical and mechanical properties, biocompatibility, and non-toxicity to the human body. However, the current alloys available still have several issues, such as cytotoxicity of Al and V and high elastic modulus values, compared to human bone. β-type alloys, compared to α-type and (α + β)-type Ti alloys, have lower elastic modulus and higher mechanical strength.

View Article and Find Full Text PDF