Publications by authors named "Willian S Korim"

In rats and guinea pigs, sensory innervation of the airways is derived largely from the vagus nerve, with the extrapulmonary airways innervated by Wnt1+ jugular neurons and the intrapulmonary airways and lungs by Phox2b+ nodose neurons; however, our knowledge of airway innervation in mice is limited. We used genetically targeted expression of enhanced yellow fluorescent protein-channelrhodopsin-2 (EYFP-ChR2) in Wnt1+ or Phox2b+ tissues to characterize jugular and nodose-mediated physiological responses and airway innervation in mice. With optical stimulation, Phox2b+ vagal fibers modulated cardiorespiratory function in a frequency-dependent manner while right Wnt1+ vagal fibers induced a small increase in respiratory rate.

View Article and Find Full Text PDF

Background: Intraoperative inflammation may contribute to postoperative neurocognitive disorders after cardiac surgery requiring cardiopulmonary bypass (CPB). However, the relative contributions of general anesthesia (GA), surgical site injury, and CPB are unclear.

Methods: In adult female sheep, we investigated (1) the temporal profile of proinflammatory and anti-inflammatory cytokines and (2) the extent of microglia activation across major cerebral cortical regions during GA and surgical trauma with and without CPB (N = 5/group).

View Article and Find Full Text PDF

Background: Electrical stimulation applied to individual organs, peripheral nerves, or specific brain regions has been used to treat a range of medical conditions. In cardiovascular disease, autonomic dysfunction contributes to the disease progression and electrical stimulation of the vagus nerve has been pursued as a treatment for the purpose of restoring the autonomic balance. However, this approach lacks selectivity in activating function- and organ-specific vagal fibers and, despite promising results of many preclinical studies, has so far failed to translate into a clinical treatment of cardiovascular disease.

View Article and Find Full Text PDF

There is evidence to suggest that hypertension involves a chronic low-grade systemic inflammatory response; however, the underlying mechanisms are unclear. To further understand the role of inflammation in hypertension, we used a rat renovascular model of hypertension in which we administered the TNF-α synthesis inhibitor pentoxifylline (PTX, 30 mg/kg/day) in the drinking water for 60 days. In conscious rats, PTX administration significantly attenuated the development of hypertension (systolic blood pressure, PTX: 145 ± 8 vs.

View Article and Find Full Text PDF

Inflammatory mediators play a critical role in the regulation of sympathetic outflow to cardiovascular organs in hypertension. Emerging evidence highlights the involvement of immune cells in the regulation of blood pressure. However, it is still unclear how these immune cells are activated and recruited to key autonomic brain regions to regulate sympathetic outflow to cardiovascular organs.

View Article and Find Full Text PDF
Article Synopsis
  • Monitoring bioelectric signals in peripheral sympathetic nerves of small animals is key to understanding how the autonomic nervous system affects diseases, emphasizing the need for advanced electrodes.
  • The study introduces a new highly stretchable, low-impedance electrode made from microcracked gold films topped with a conducting polymer composite (PEDOT:PSS) that allows for effective ion-to-electron exchange.
  • The design of the conducting polymer is optimized for adherence and low impedance, ensuring compliance with the underlying gold layer, which successfully captures renal nerve activity in chronic rat models.
View Article and Find Full Text PDF

Aims: Neuroinflammation is a common feature in renovascular, obesity-related, and angiotensin II mediated hypertension. There is evidence that increased release of the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α) contributes to the development of the hypertension, but the underlying neural mechanisms are unclear. Here, we investigated whether TNF-α stimulates neurons in the area postrema (AP), a circumventricular organ, to elicit sympathetic excitation, and increases in blood pressure (BP).

View Article and Find Full Text PDF

Key Points: To maintain appropriate blood flow to various tissues of the body under a variety of physiological states, autonomic nervous system reflexes regulate regional sympathetic nerve activity and arterial blood pressure. Our data obtained in anaesthetized rats revealed that glycine released in the rostral ventrolateral medulla (RVLM) plays a critical role in maintaining arterial baroreflex sympathoinhibition. Manipulation of brainstem nuclei with known inputs to the RVLM (nucleus tractus solitarius and caudal VLM) unmasked tonic glycinergic inhibition in the RVLM.

View Article and Find Full Text PDF

What is the topic of this review? This review highlights the importance of the blood-brain barrier in the context of diseases involving autonomic dysfunction, such as hypertension and heart failure. What advances does it highlight? It highlights the potential role of pro-inflammatory cytokines, leucocytes and angiotensin II in disrupting the blood-brain barrier in cardiovascular diseases. Advances are highlighted in our understanding of neurovascular unit cells, astrocytes and microglia, with a specific emphasis on their pathogenic roles within the brain.

View Article and Find Full Text PDF

Iatrogenic hypoglycemia in response to insulin treatment is commonly experienced by patients with type 1 diabetes and can be life threatening. The body releases epinephrine in an attempt to counterregulate hypoglycemia, but the neural mechanisms underlying this phenomenon remain to be elucidated. Orexin neurons in the perifornical hypothalamus (PeH) project to the rostral ventrolateral medulla (RVLM) and are likely to be involved in epinephrine secretion during hypoglycemia.

View Article and Find Full Text PDF

Glucose is an essential metabolic substrate for all bodily tissues. The brain depends particularly on a constant supply of glucose to satisfy its energy demands. Fortunately, a complex physiological system has evolved to keep blood glucose at a constant level.

View Article and Find Full Text PDF

Glucoprivation activates neurons in the perifornical hypothalamus (PeH) and in the rostral ventrolateral medulla (RVLM), which results in the release of adrenaline. The current study aimed to establish 1) whether neuroglucoprivation in the PeH or in the RVLM elicits adrenaline release in vivo and 2) whether direct activation by glucoprivation or orexin release in the RVLM modulates the adrenaline release. Neuroglucoprivation in the PeH or RVLM was elicited by microinjections of 2-deoxy-D-glucose or 5-thio-D-glucose in anesthetized, euglycemic rats.

View Article and Find Full Text PDF

Noxious somatic stimulation evokes respiratory and autonomic responses. The mechanisms underlying the responses and the manner in which they are co-ordinated are still unclear. The effects of activation of somatic nociceptive fibres on lumbar sympathetic nerve activity at slow (2-10 Hz) and fast frequency bands (100-1000 Hz) and the effects on respiratory-sympathetic coupling are unknown.

View Article and Find Full Text PDF

In the nucleus tractus solitarii (NTS) of rats, blockade of extracellular ATP breakdown to adenosine reduces arterial blood pressure (AP) increases that follow stimulation of the hypothalamic defense area (HDA). The effects of ATP on NTS P2 receptors, during stimulation of the HDA, are still unclear. The aim of this study was to determine whether activation of P2 receptors in the NTS mediates cardiovascular responses to HDA stimulation.

View Article and Find Full Text PDF

To determine the organization of presympathetic vasomotor drive by phenotypic populations of rostral ventrolateral medulla (RVLM) neurons, we examined the somatosympathetic reflex (SSR) evoked in four sympathetic nerves together with selective lesions of RVLM presympathetic neurons. Urethane-anesthetized (1.3 g/kg ip), paralyzed, vagotomized and artificially ventilated Sprague-Dawley rats (n = 41) were used.

View Article and Find Full Text PDF

Noxious stimulation of the leg increases hind limb blood flow (HBF) to the ipsilateral side and decreases to the contralateral in rat. Whether or not this asymmetrical response is due to direct control by sympathetic terminals or mediated by other factors such as local metabolism and hormones remains unclear. The aim of this study was to compare responses in lumbar sympathetic nerve activity, evoked by stimulation of the ipsilateral and contralateral sciatic nerve (SN).

View Article and Find Full Text PDF

Several findings suggest that A1 noradrenergic neurons in the caudal ventrolateral medulla (CVLM) contribute to body fluid homeostasis and cardiovascular regulation. Recently we demonstrated that the renal vasodilation induced by infusion of hypertonic saline (HS) depends on the integrity of the A1 neurons. Here we determined the effect of lesions of these neurons on the inhibition of the renal sympathetic nerve activity (RSNA) induced by HS infusion.

View Article and Find Full Text PDF

Several findings suggest that catecholaminergic neurons in the caudal ventrolateral medulla (CVLM) contribute to body fluid homeostasis and cardiovascular regulation. From the CVLM other areas in central nervous system involved in cardiovascular regulation and hydroelectrolyte balance can be activated. Therefore, the aim of the present study was to investigate the effects of lesions of these neurons on 0.

View Article and Find Full Text PDF