Publications by authors named "Willian N Lagos"

Complex neocortical functions rely on networks of diverse excitatory and inhibitory neurons. While local connectivity rules between major neuronal subclasses have been established, the specificity of connections at the level of transcriptomic subtypes remains unclear. We introduce single transcriptome assisted rabies tracing (START), a method combining monosynaptic rabies tracing and single-nuclei RNA sequencing to identify transcriptomic cell types, providing inputs to defined neuron populations.

View Article and Find Full Text PDF

Parallel visual pathways from the retina to the primary visual cortex (V1) via the lateral geniculate nucleus are common to many mammalian species, including mice, carnivores, and primates. However, it remains unclear which visual features present in both retina and V1 may be inherited from parallel pathways versus extracted by V1 circuits in the mouse. Here, using calcium imaging and rabies circuit tracing, we explore the relationships between tuning of layer 4 (L4) V1 neurons and their retinal ganglion cell (RGC) inputs.

View Article and Find Full Text PDF

Retrograde monosynaptic tracing using glycoprotein-deleted rabies virus is an important component of the toolkit for investigation of neural circuit structure and connectivity. It allows for the identification of first-order presynaptic connections to cell populations of interest across both the central and peripheral nervous system, helping to decipher the complex connectivity patterns of neural networks that give rise to brain function. Despite its utility, the factors that influence the probability of transsynaptic rabies spread are not well understood.

View Article and Find Full Text PDF

Parallel functional and anatomical visual pathways from the retina to primary visual cortex (V1) via the lateral geniculate nucleus (LGN) are common to many mammalian species, including mice, carnivores and primates. However, the much larger number of retinal ganglion cell (RGC) types that project to the LGN, as well as the more limited lamination of both the LGN and the thalamocortical-recipient layer 4 (L4) in mice, leaves considerable uncertainty about which visual features present in both retina and V1 might be inherited from parallel pathways versus extracted by V1 circuits in the mouse visual system. Here, we explored the relationships between functional properties of L4 V1 neurons and their RGC inputs by taking advantage of two Cre-expressing mouse lines - Nr5a1-Cre and Scnn1a-Tg3-Cre - that each label functionally and anatomically distinct populations of L4 neurons.

View Article and Find Full Text PDF

The mouse visual system consists of several visual cortical areas thought to be specialized for different visual features and/or tasks. Previous studies have revealed differences between primary visual cortex (V1) and other higher visual areas, namely, anterolateral (AL) and posteromedial (PM), and their tuning preferences for spatial and temporal frequency. However, these differences have primarily been characterized using methods that are biased toward superficial layers of cortex, such as two-photon calcium imaging.

View Article and Find Full Text PDF