To explore new worlds we must ensure humans can survive and thrive in the space environment. Incidence of kidney stones in astronauts is a major risk factor associated with long term missions, caused by increased blood calcium levels due to bone demineralisation triggered by microgravity and space radiation. Transcriptomic changes have been observed in other tissues during spaceflight, including the kidney.
View Article and Find Full Text PDFHuman expansion in space is hampered by the physiological risks of spaceflight. The muscle and the liver are among the most affected tissues during spaceflight and their relationships in response to space exposure have never been studied. We compared the transcriptome response of liver and quadriceps from mice on NASA RR1 mission, after 37 days of exposure to spaceflight using GSEA, ORA, and sparse partial least square-differential analysis.
View Article and Find Full Text PDFThe European research community, via European Space Agency (ESA) spaceflight opportunities, has significantly contributed toward our current understanding of spaceflight biology. Recent molecular biology experiments include "omic" analysis, which provides a holistic and systems level understanding of the mechanisms underlying phenotypic adaptation. Despite vast interest in, and the immense quantity of biological information gained from space omics research, the knowledge of ESA-related space omics works as a collective remains poorly defined due to the recent exponential application of omics approaches in space and the limited search capabilities of pre-existing records.
View Article and Find Full Text PDFSystemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy and excessive fibrosis of the skin and internal organs. To this day, no effective treatments to prevent the progression of fibrosis exist, and SSc patients have disabilities and reduced life expectancy. The need to better understand pathways that drive SSc and to find therapeutic targets is urgent.
View Article and Find Full Text PDFObjectives: Systemic sclerosis (SSc) is a complex disease of unknown aetiology in which inflammation and fibrosis lead to multiple organ damage. There is currently no effective therapy that can halt the progression of fibrosis or reverse it, thus studies that provide novel insights into disease pathogenesis and identify novel potential therapeutic targets are critically needed.
Methods: We used global gene expression and genome-wide DNA methylation analyses of dermal fibroblasts (dFBs) from a unique cohort of twins discordant for SSc to identify molecular features of this pathology.
An emerging theory about racial differences in cancer risk and outcomes is that psychological and social stressors influence cellular stress responses; however, limited empirical data are available on racial differences in cellular stress responses among men who are at risk for adverse prostate cancer outcomes. In this study, we undertook a systems approach to examine molecular profiles and cellular stress responses in an important segment of African American (AA) and European American (EA) men: men undergoing prostate biopsy. We assessed the prostate transcriptome with a single biopsy core via high throughput RNA sequencing (RNA-Seq).
View Article and Find Full Text PDFIntroduction: Advances in high-throughput sequencing have greatly advanced our understanding of long non-coding RNAs (lncRNAs) in a relatively short period of time. This has expanded our knowledge of cancer, particularly how lncRNAs drive many important cancer phenotypes via their regulation of gene expression.
Areas Covered: Men of African descent are disproportionately affected by PC in terms of incidence, morbidity, and mortality.
Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents.
View Article and Find Full Text PDFUsing a ground-based model to simulate spaceflight [21-days of single-housed, hindlimb unloading (HLU) combined with continuous low-dose gamma irradiation (LDR, total dose of 0.04 Gy)], an in-depth survey of the immune and hematological systems of mice at 7-days post-exposure was performed. Collected blood was profiled with a hematology analyzer and spleens were analyzed by whole transcriptome shotgun sequencing (RNA-sequencing).
View Article and Find Full Text PDFThe development of the Artemis programme with the goal of returning to the moon is spurring technology advances that will eventually take humans to Mars and herald a new era of interplanetary space travel. However, long-term space travel poses unique challenges including exposure to ionising radiation from galactic cosmic rays and potential solar particle events, exposure to microgravity and specific nutritional challenges arising from earth independent exploration. Ionising radiation is one of the major obstacles facing future space travel as it can generate oxidative stress and directly damage cellular structures such as DNA, in turn causing genomic instability, telomere shortening, extracellular-matrix remodelling and persistent inflammation.
View Article and Find Full Text PDFWith the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes.
View Article and Find Full Text PDFSpaceflight is known to impose changes on human physiology with unknown molecular etiologies. To reveal these causes, we used a multi-omics, systems biology analytical approach using biomedical profiles from fifty-nine astronauts and data from NASA's GeneLab derived from hundreds of samples flown in space to determine transcriptomic, proteomic, metabolomic, and epigenetic responses to spaceflight. Overall pathway analyses on the multi-omics datasets showed significant enrichment for mitochondrial processes, as well as innate immunity, chronic inflammation, cell cycle, circadian rhythm, and olfactory functions.
View Article and Find Full Text PDFBackground: In systems biology, it is of great interest to identify previously unreported associations between genes. Recently, biomedical literature has been considered as a valuable resource for this purpose. While classical clustering algorithms have popularly been used to investigate associations among genes, they are not tuned for the literature mining data and are also based on strong assumptions, which are often violated in this type of data.
View Article and Find Full Text PDFScleroderma-associated pulmonary fibrosis (SSc-PF) and idiopathic pulmonary fibrosis (IPF) are two of many chronic fibroproliferative diseases that are responsible for nearly 45% of all deaths in developed countries. While sharing several pathobiological characteristics, they also have very distinct features. Currently no effective anti-fibrotic treatments exist that can halt the progression of PF or reverse it.
View Article and Find Full Text PDFIonizing radiation from galactic cosmic rays (GCR) is one of the major risk factors that will impact the health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. The NASA GeneLab project has detailed information on radiation exposure using animal models with curated dosimetry information for spaceflight experiments. We analyzed multiple GeneLab omics datasets associated with both ground-based and spaceflight radiation studies that included and approaches.
View Article and Find Full Text PDFUnlabelled: Endocrine disrupting compounds (EDCs) have the potential to cause adverse effects on wild-life and human health. Two important EDCs are the synthetic estrogen 17α-ethynylestradiol (EE2) and bisphenol-A (BPA) both of which are xenoestrogens (XEs) as they bind the estrogen receptor and dis-rupt estrogen physiology in mammals and other vertebrates. In the recent years the influence of XEs on oncogenes, specifically in relation to breast and prostate cancer has been the subject of considerable study.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFSpaceflight has several detrimental effects on the physiology of astronauts, many of which are recapitulated in rodent models. Mouse studies performed on the Space Shuttle showed disruption of lipid metabolism in liver. However, given that these animals were not sacrificed on-orbit and instead returned live to earth, it is unclear if these disruptions were solely induced by space stressors (e.
View Article and Find Full Text PDFThe objective was to determine via high-throughput RNA sequencing the temporal effects of rosiglitazone (Avandia) on the neonatal rat ventricular myocyte transcriptome. Neonatal rat ventricular myocytes (NRVMs) were exposed to rosiglitazone . Meta analyses utilized temporal comparisons of 0.
View Article and Find Full Text PDF