Publications by authors named "Williamson Gustave"

Background: The co-application of biochar and wood vinegar has demonstrated the potential to enhance premium crop production. The present study reveals the effects of co-applying rice husk biochar and wood vinegar (both foliar and soil application) on soil properties and the growth of Chinese cabbage (Brassica chinensis L.) in a two-season pot experiment.

View Article and Find Full Text PDF

Since the initial introduction of whole-cell bioreporters (WCBs) nearly 30 years ago, their high sensitivity, selectivity, and suitability for on-site detection have rendered them highly promising for environmental monitoring, medical diagnosis, food safety, biomanufacturing, and other fields. Especially in the environmental field, the technology provides a fast and efficient way to assess the bioavailability of pollutants in the environment. Despite these advantages, the technology has not been commercialized.

View Article and Find Full Text PDF

Anaerobic methane oxidation (AOM) can drive soil arsenate reduction, a process known as methane-dependent arsenate reduction (M-AsR), which is a critical driver of arsenic (As) release in soil. Low molecular weight organic acids (LMWOAs), an important component of rice root exudates, have an unclear influence and mechanism on the M-AsR process. To narrow this knowledge gap, three typical LMWOAs-citric acid, oxalic acid, and acetic acid-were selected and added to As-contaminated paddy soils, followed by the injection of CH and incubation under anaerobic conditions.

View Article and Find Full Text PDF

Microorganisms are vital to the emission of greenhouse gases and transforming pollutants in paddy soils. However, the impact of microbial diversity loss on anaerobic methane (CH) oxidation and arsenic (As) reduction under flooded conditions remains unclear. In this study, we inoculated microbial suspensions into natural As-contaminated paddy soils using a dilution approach (untreated, 10, 10, 10, 10 dilutions) to manipulate microbial diversity levels.

View Article and Find Full Text PDF

Root exudate is a major source of soil organic matter and can significantly affect arsenic (As) migration and transformation in paddy soils. Citric acid is the main component of rice root exudate, however, the impacts and rules of citric acid on As bioavailability and rhizobacteria in different soils remains unclear. This study investigated the effects of citric acid on As transformation and microbial community in ten different paddy soils by flooded soil culture experiments.

View Article and Find Full Text PDF

Arsenic (As) contamination is a global concern, especially in paddy fields, as it represents a significant pathway for As reaching in the food chain. This is primarily due to the high accumulation of As in rice grains, which is a staple food for billions of people globally. Here we investigated the effect of synthetic rainwater-borne hydrogen peroxide (HO)-induced Fenton oxidation process in paddy soil on As uptake and speciation in rice plants at different growth stages.

View Article and Find Full Text PDF
Article Synopsis
  • Wild bees are crucial for pollinating crops and are facing decline due to various environmental stressors, including metalloid pollution from arsenic (As) and selenium (Se).
  • A study in Southeast China analyzed wild bee communities and found that the large carpenter bee, Xylocopa tranquebarorum, had lower concentrations of As and Se compared to other species, with semi-natural habitats linked to lower Se levels in bees.
  • The research indicated that while As pollution negatively affected bee diversity, it did not impact abundance, and Se had no significant effect on either, highlighting the need to monitor metalloid pollution in bees and their food sources.
View Article and Find Full Text PDF

The omnipresence of secondary microplastics (MPs) in aquatic ecosystems has become an increasingly alarming public health concern. Hydrogen peroxide (HO) is an important oxidant in nature and the most stable reactive oxygen species occurred in natural water. In order to explore the contribution of free ˙OH generated from HO-driven Fenton-like reactions on the degradation of polyethylene (PE) and generation of micro- and nano-scale plastics in water, a batch experiment was conducted over a period of 620 days in water treated with micromolar HO.

View Article and Find Full Text PDF

Flooded rice paddy fields are a significant source of anthropogenic methane (CH) emissions. Cadmium (Cd) is one of the most common and toxic contaminants in paddy soils. However, little is known about how the soil microbial communities associated with CH emissions respond to the increasing Cd-stress in paddies.

View Article and Find Full Text PDF

Arsenic (As) is a major environmental pollutant and poses a significant health risk to humans through rice consumption. Elevating the soil redox potential (Eh) has been shown to reduce As bioavailability and decrease As accumulation in rice grains. However, sustainable methods for managing the Eh of rice paddies are lacking.

View Article and Find Full Text PDF

Wild bees provide important pollination services, but they face numerous stressors that threaten them and their ecosystem services. Wild bees can be exposed to heavy metal pollution through the consumption of nectar, pollen, and water, which might cause bee decline. While some studies have measured heavy metal concentrations in honeybees, few studies have monitored heavy metal concentrations in wild bees or explored their potential effects on wild bee communities.

View Article and Find Full Text PDF

Heavy metal pollution in soils threatens food safety and human health. Calcium sulfate and ferric oxide are commonly used to immobilize heavy metals in soils. However, the spatial and temporal variations of the heavy metals' bioavailability in soils regulated by a combined material of calcium sulfate and ferric oxide (CSF) remain unclear.

View Article and Find Full Text PDF

Microplastics (MPs) contamination in soils seriously threatens agroecosystems globally. However, very few studies have been done on the effects of MPs on the soil nitrogen cycle and related functional microorganisms. To assess MP's impact on the soil nitrogen cycle and related functional bacteria, we carried out a one-month soil incubation experiment using typical acidic soil.

View Article and Find Full Text PDF

Water contaminated with emerging pollutants has become a serious environmental issue globally. Biochar is a porous and carbon-rich material produced from biomass pyrolysis and has the potential to be used as an integrated adsorptive material. Many studies have shown that biochar is capable to adsorb emerging pollutants from aquatic systems and could be used to solve the water pollution problem.

View Article and Find Full Text PDF

Heavy metal pollutants resulting from human activities consistently move from the topsoil to the subsoil profiles under the influence of rainfall leaching. This study intends to predict the long-term transport of heavy metals at an abandoned e-waste recycling site with respect to historical pollution activities, land use, and metal pollutant dynamics. Our results showed that the site was seriously contaminated with heavy metals (Cd, Cu, Pb, and Zn) in the soil profiles.

View Article and Find Full Text PDF

Arsenic (As) is a priority environmental pollutant in paddy field. The coupling of arsenate (As(V)) reduction with anaerobic methane (CH) oxidation was recently demonstrated in paddy soils and has been suggested to serve as a critical driver for As transformation and mobilization. However, whether As(V)-dependent CH oxidation is driven by distinct methanotrophs under different pH conditions remains unclear.

View Article and Find Full Text PDF

Root exudates are crucial for plants returning organic matter to soils, which is assumed to be a major source of carbon for the soil microbial community. This study investigated the influence of root exudates on the fate of arsenic (As) with a lab simulation experiment. Our findings suggested that root exudates had a dose effect on the soil physicochemical properties, As speciation transformation and the microbial community structure at different concentrations.

View Article and Find Full Text PDF

Rice straw (RS) amendment promotes arsenic (As) methylation and methane (CH) emissions from paddy soils, which can cause straighthead disease and climate warming. Although methanogens have been identified as critical regulators of methylated As concentrations in flooded soils, the mechanism of these microbial groups on As methylation in paddy soils with RS amendment remains unknown. In this study, paddy soil was incubated to test the response in As methylation and methanogenesis in flooded soil with RS amendment.

View Article and Find Full Text PDF

Microplastics (MPs) and sulfamethoxazole (SMX) are emerging contaminants that are ubiquitous in the soil environment. In this study, we investigated MPs polymer type and soil environmental factor effects on SMX adsorption behavior in the soil system. Our results showed that MPs dosage affected the soil particles' SMX adsorption rate and capacity (Qe).

View Article and Find Full Text PDF

Anaerobic methane oxidation (AOM) coupled to nitrate, sulfate and iron has been most extensively studied. Recently, AOM coupled with arsenate reduction (AOM-AsR) was demonstrated in laboratory microcosm incubation, however whether AOM-AsR is active in the field conditions remains elusive. Here, we used C-labeled methane (CH) to investigate the AOM-AsR process in both anaerobic microcosms and field conditions with identical soils.

View Article and Find Full Text PDF

Arsenic (As) is a toxic metalloid that is ubiquitous in paddy soils, where passivation is the most widely used method for remediating As contamination. Recently, anaerobic methane oxidation coupled with arsenate (As(V)) reduction (AOM-AsR) has been shown to act as a critical driver for As release in paddy fields. However, the effect and mechanism of the passivators on the AOM-AsR process remain unclear.

View Article and Find Full Text PDF

Arsenic (As) pollution in paddy fields is a major threat to rice safety. Existing As remediation techniques are costly, require external chemical addition and degrade soil properties. Here, we report the use of plastic tubes as a recyclable tool to precisely extract As from contaminated soils.

View Article and Find Full Text PDF

Arsenate [As(V)] is a toxic metalloid and has been observed at high concentrations in groundwater globally. In this study, a bioelectrochemical system (BES) was used to efficiently remove As(V) from groundwater, and the mechanisms involved were systematically investigated. Our results showed that As(V) can be efficiently removed in the BES cathode chamber.

View Article and Find Full Text PDF

Potentially toxic element (PTE) contamination in Wainivesi River, Fiji triggered by gold-mining activities is a major public health concern deserving attention. However, chemometric approaches and pattern recognition of PTEs in surface water and sediment are yet hardly studied in Pacific Island countries like Fijian urban River. In this study, twenty-four sediment and eight water sampling sites from the Wainivesi River, Fiji were explored to evaluate the spatial pattern, eco-environmental pollution, and source apportionment of PTEs.

View Article and Find Full Text PDF