Publications by authors named "Williams Rodriguez"

PACAP is a neuropeptide with putative neuroprotective, regenerative, and immunomodulatory actions. PACAP mRNA is up-regulated in motor neurons following facial nerve axotomy in wild type, but not immunodeficient SCID mice. Because CD4+ lymphocytes appear to be neuroprotective in facial nerve and other injury models, we studied PACAP gene expression in SCID mice preinfused with CD4+ enriched splenocytes.

View Article and Find Full Text PDF

The neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating peptide (PACAP) are induced strongly in neurons after several types of injury, and exhibit neuroprotective actions in vitro and in vivo. It is thought that changes in expression of neuropeptides and other molecules in injured neurons are mediated by new factors produced in Schwann and immune cells at the injury site, a loss of target-derived factors, or a combination of mediators. To begin to determine the role of the inflammatory mediators, we investigated axotomy-induced changes in VIP and PACAP gene expression in the facial motor nucleus in severe combined immunodeficient (SCID) mice, and in mice with targeted mutations in specific cytokine genes.

View Article and Find Full Text PDF

The related neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are expressed at high levels in the neurons of the suprachiasmatic nucleus (SCN), but their function in the regulation of circadian rhythms is unknown. To study the role of these peptides on the circadian system in vivo, a new mouse model was developed in which both VIP and PHI genes were disrupted by homologous recombination. In a light-dark cycle, these mice exhibited diurnal rhythms in activity which were largely indistinguishable from wild-type controls.

View Article and Find Full Text PDF

The detailed mRNA distributions of pituitary adenylyl cyclase-activating polypeptide (PACAP) and its selective type I receptor (PAC(1)) were systematically compared in the brain of the frog Xenopus laevis. PACAP mRNA expression overlapped with that of PAC(1) in many brain areas such as the pallium, hypothalamic preoptic area, ventral hypothalamic nuclei, habenular nucleus, most thalamic nuclei, the cerebellular nucleus, and nuclei of isthmi. In some structures, PACAP and PAC(1) gene transcripts were present in anatomically distinct cell layers.

View Article and Find Full Text PDF