Because humans spend about one-third of their time asleep in their bedrooms and are themselves emission sources of volatile organic compounds (VOCs), it is important to specifically characterize the composition of the bedroom air that they experience during sleep. This work uses real-time indoor and outdoor measurements of volatile organic compounds (VOCs) to examine concentration enhancements in bedroom air during sleep and to calculate VOC emission rates associated with sleeping occupants. Gaseous VOCs were measured with proton-transfer reaction time-of-flight mass spectrometry during a multiweek residential monitoring campaign under normal occupancy conditions.
View Article and Find Full Text PDFThe chemical composition of incense-generated organic aerosol in residential indoor air has received limited attention in Western literature. In this study, we conducted incense burning experiments in a single-family California residence during vacancy. We report the chemical composition of organic fine particulate matter (PM), associated emission factors (EFs), and gas-particle phase partitioning for indoor semivolatile organic compounds (SVOCs).
View Article and Find Full Text PDFIndoor sources of air pollution worsen indoor and outdoor air quality. Thus, identifying and reducing indoor pollutant sources would decrease both indoor and outdoor air pollution, benefit public health, and help address the climate crisis. As outdoor sources come under regulatory control, unregulated indoor sources become a rising percentage of the problem.
View Article and Find Full Text PDFBuilding conditions, outdoor climate, and human behavior influence residential concentrations of fine particulate matter (PM). To study PM spatiotemporal variability in residences, we acquired paired indoor and outdoor PM measurements at 3,977 residences across the United States totaling >10,000 monitor-years of time-resolved data (10-min resolution) from the PurpleAir network. Time-series analysis and statistical modeling apportioned residential PM concentrations to outdoor sources (median residential contribution = 52% of total, coefficient of variation = 69%), episodic indoor emission events such as cooking (28%, CV = 210%) and persistent indoor sources (20%, CV = 112%).
View Article and Find Full Text PDFEnviron Sci Technol
September 2023
Ozone concentrations tend to be substantially lower indoors than outdoors, largely because of ozone reactions with indoor surfaces. When there are no indoor sources of ozone, a common condition, the net concentration of gaseous products derived from indoor ozone chemistry scales linearly with the difference between outdoor and indoor ozone concentrations, termed "ozone loss." As such, ozone loss is a metric that might be used by epidemiologists to disentangle the adverse health effects of ozone's oxidation products from those of exposure to ozone itself.
View Article and Find Full Text PDFSemivolatile organic compounds (SVOCs) represent an important class of indoor pollutants. The partitioning of SVOCs between airborne particles and the adjacent air influences human exposure and uptake. Presently, little direct experimental evidence exists about the influence of indoor particle pollution on the gas-particle phase partitioning of indoor SVOCs.
View Article and Find Full Text PDFVolatile methyl siloxanes (VMS) are ubiquitous in indoor environments due to their use in personal care products. This paper builds on previous work identifying sources of VMS by synthesizing time-resolved proton-transfer reaction time-of-flight mass spectrometer VMS concentration measurements from four multiweek indoor air campaigns to elucidate emission sources and removal processes. Temporal patterns of VMS emissions display both continuous and episodic behavior, with the relative importance varying among species.
View Article and Find Full Text PDFKnowledge about person-to-person transmission of SARS-CoV-2 is reviewed, emphasizing three components: emission of virus-containing particles and drops from infectious persons; transport and fate of such emissions indoors; and inhalation of viral particles by susceptible persons. Emissions are usefully clustered into three groups: small particles (diameter 0.1-5 µm), large particles (5-100 µm), and ballistic drops (>100 µm).
View Article and Find Full Text PDFBecause people spend most of their time indoors, much of their exposure to ozone occurs in buildings, which are partially protective against outdoor ozone. Measurements in approximately 2000 indoor environments (residences, schools, and offices) show a central tendency for average indoor ozone concentration of 4-6 ppb and an indoor to outdoor concentration ratio of about 25%. Considerable variability in this ratio exists among buildings, as influenced by seven building-associated factors: ozone removal in mechanical ventilation systems, ozone penetration through the building envelope, air-change rates, ozone loss rate on fixed indoor surfaces, ozone loss rate on human occupants, ozone loss by homogeneous reaction with nitrogen oxides, and ozone loss by reaction with gas-phase organics.
View Article and Find Full Text PDFParticle emissions from cooking are a major contributor to residential indoor air pollution and could also contribute to ambient concentrations. An important constituent of these emissions is light-absorbing carbon, including black carbon (BC) and brown carbon (BrC). This work characterizes the contributions of indoor and outdoor sources of BC and BrC to the indoor environment by concurrently measuring real-time concentrations of these air pollutants indoors and outdoors during the month-long HOMEChem study.
View Article and Find Full Text PDFTime spent in residences substantially contributes to human exposure to volatile organic compounds (VOCs). Such exposures have been difficult to study deeply, in part because VOC concentrations and indoor occupancy vary rapidly. Using a fast-response online mass spectrometer, we report time-resolved exposures from multi-season sampling of more than 200 VOCs in two California residences.
View Article and Find Full Text PDFOutdoor ozone transported indoors initiates oxidative chemistry, forming volatile organic products. The influence of ozone chemistry on indoor air composition has not been directly quantified in normally occupied residences. Here, we explore indoor ozone chemistry in a house in California with two adult inhabitants.
View Article and Find Full Text PDFAir-change rate is an important parameter influencing residential air quality. This article critically assesses the state of knowledge regarding residential air-change rates, emphasizing periods of normal occupancy. Cumulatively, about 40 prior studies have measured air-change rates in approximately 10,000 homes using tracer gases, including metabolic CO .
View Article and Find Full Text PDFDuring the 2020 COVID-19 pandemic, an outbreak occurred following attendance of a symptomatic index case at a weekly rehearsal on 10 March of the Skagit Valley Chorale (SVC). After that rehearsal, 53 members of the SVC among 61 in attendance were confirmed or strongly suspected to have contracted COVID-19 and two died. Transmission by the aerosol route is likely; it appears unlikely that either fomite or ballistic droplet transmission could explain a substantial fraction of the cases.
View Article and Find Full Text PDFInhalation of particulate matter is associated with adverse health outcomes. The fluorescent portion of supermicron particulate matter has been used as a proxy for bioaerosols. The sources and emission rates of fluorescent particles in residential environments are not well-understood.
View Article and Find Full Text PDFIt is important to improve our understanding of exposure to particulate matter (PM) in residences because of associated health risks. The HOMEChem campaign was conducted to investigate indoor chemistry in a manufactured test house during prescribed everyday activities, such as cooking, cleaning, and opening doors and windows. This paper focuses on measured size distributions of PM (0.
View Article and Find Full Text PDFMeasurements by semivolatile thermal desorption aerosol gas chromatography (SV-TAG) were used to investigate how semivolatile organic compounds (SVOCs) partition among indoor reservoirs in (1) a manufactured test house under controlled conditions (HOMEChem campaign) and (2) a single-family residence when vacant (H2 campaign). Data for phthalate diesters and siloxanes suggest that volatility-dependent partitioning processes modulate airborne SVOC concentrations through interactions with surface-laden condensed-phase reservoirs. Airborne concentrations of SVOCs with vapor pressures in the range of C13 to C23 alkanes were observed to be correlated with indoor air temperature.
View Article and Find Full Text PDFNumerous acids and bases influence indoor air quality. The most abundant of these species are CO (acidic) and NH (basic), both emitted by building occupants. Other prominent inorganic acids are HNO , HONO, SO , H SO , HCl, and HOCl.
View Article and Find Full Text PDFHuman health is affected by indoor air quality. One distinctive aspect of the indoor environment is its very large surface area that acts as a poorly characterized sink and source of gas-phase chemicals. In this work, air-surface interactions of 19 common indoor air contaminants with diverse properties and sources were monitored in a house using fast-response, on-line mass spectrometric and spectroscopic methods.
View Article and Find Full Text PDFPrevious work examining the condensed-phase products of squalene particle ozonolysis found that an increase in water vapor concentration led to lower concentrations of secondary ozonides, increased concentrations of carbonyls, and smaller particle diameter, suggesting that water changes the fate of the Criegee intermediate. To determine if this volume loss corresponds to an increase in gas-phase products, we measured gas-phase volatile organic compound (VOC) concentrations via proton-transfer-reaction time-of-flight mass spectrometry. Studies were conducted in a flow-tube reactor at atmospherically relevant ozone (O) exposure levels (5-30 ppb h) with pure squalene particles.
View Article and Find Full Text PDF