Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea-level observing system, the knowledge of regional sea-level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time.
View Article and Find Full Text PDFSea-level rise sits at the frontier of usable climate climate change research, because it involves natural and human systems with long lags, irreversible losses, and deep uncertainty. For example, many of the measures to adapt to sea-level rise involve infrastructure and land-use decisions, which can have multigenerational lifetimes and will further influence responses in both natural and human systems. Thus, sea-level science has increasingly grappled with the implications of (1) deep uncertainty in future climate system projections, particularly of human emissions and ice sheet dynamics; (2) the overlay of slow trends and high-frequency variability (e.
View Article and Find Full Text PDFSea-level rise (SLR) is not just a future trend; it is occurring now in most coastal regions across the globe. It thus impacts not only long-range planning in coastal environments, but also emergency preparedness. Its inevitability and irreversibility on long time scales, in addition to its spatial non-uniformity, uncertain magnitude and timing, and capacity to drive non-stationarity in coastal flooding on planning and engineering timescales, create unique challenges for coastal risk-management decision processes.
View Article and Find Full Text PDF