Cohesin's Smc1 and Smc3 subunits form V-shaped heterodimers, the nucleotide binding domains (NBDs) of which bind the C- and N-terminal domains, respectively, of the α-kleisin subunit, forming a large tripartite ring within in which sister DNAs are entrapped, and thereby held together (sister chromatid cohesion). During replication, establishment of stable cohesion is dependent on Eco1-mediated acetylation of Smc3's NBD, which is thought to prevent dissociation of α-kleisin from Smc3, thereby locking shut a "DNA exit gate." How Scc3 and Pds5, regulatory subunits bound to α-kleisin, regulate cohesion establishment and maintenance is poorly understood.
View Article and Find Full Text PDFThe role of the Nuclear Factor κB (NF-κB) transcription factor family in T cell function has been well described. The c-Rel family member is of particular importance in initiating T cell responses to antigen and regulating activation of inflammatory cytokine genes, including the Interleukin-2 (IL-2) and Granulocyte macrophage colony stimulating factor (GM-CSF) genes. c-Rel is required for chromatin remodeling of these gene promoters, which involves depletion of histones from the promoters in response to T cell activating signals.
View Article and Find Full Text PDFBackground: The Cohesin complex that holds sister chromatins together until anaphase is comprised of three core subunits: Smc1 and Smc3, two long-rod-shaped proteins with an ABC-like ATPase head (nucleotide-binding domain [NBD]) and a dimerization domain linked by a 50 nm long intramolecular antiparallel coiled-coil, and Scc1, an α-kleisin subunit interconnecting the NBD domains of Smc1 and Smc3. Cohesin's stable association with chromosomes is thought to involve entrapment of chromatin fibers by its tripartite Smc1-Smc3-Scc1 ring via a poorly understood mechanism dependent on a separate Scc2/4 loading complex. A key issue concerns where entrapment initially takes place: at sites where cohesin is found stably associated or at distinct "loading" sites from which it translocates.
View Article and Find Full Text PDF